\qquad

1. Ariana has a choice of two investments. She can invest $\$ 12,000$ at 5% for 8 years, or she can invest $\$ 9000$ at 6.5% for 7 years. Both accounts are compounded continuously. Which investment will result in the greater amount of interest earned?
2. Use the natural decay function, $\mathrm{N}(\mathrm{t})=\mathrm{N}_{0} \mathrm{e}^{-\mathrm{kt}}$, to find the age of a fossil containing 35% of the original amount of a particular substance. This substance has a half-life of 2450 years.
A. Find the decay constant.
B. Find the age of the fossil.
3. Use the formula $A=P e^{r t}$ to compute the total amount for an investment of $\$ 4500$ at 5% interest compounded continuously for 6 years.
4. The hydrogen ion concentration in moles per liter of a certain solvent is 0.00794 .
A. Write a logarithmic equation for the pH of the solvent.
B. What is the pH of the solvent?
5. Use the formula $\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}$ to determine the total number of years an investment of $\$ 5000$ at a rate of 2.5% will take to be worth $\$ 7000$.

Name:
6. Mr. Rivera is studying a species of plant. The height of the plant can be modeled by the function $f(t)=2 \ln (t+1.25)$; where $f(t)$ is the height of the plant, and t is the number of days after planting.
A. In the context of this problem, what is the domain of $f(t)$?
B. What is the parent function to Mr. Rivera's model?
C. Describe how the function is transformed from the parent function.
7. Martin borrows $\$ 5500$. The rate is set at 6% with continuous compounding.
A. How much does he owe at the end of 2 years?
B. Martin found a bank with a better interest rate of 5.5%. How much less does he owe at the end of 2 years?

