\qquad
\qquad PD. \qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE

1. A wooden fence is to be built around a 28 m -by- 78 m lot. How many meters of fencing will be needed? If the wood for the fence costs $\$ 36.50$ per meter, what will the wood for the fence cost?
[A] $212 \mathrm{~m}, \$ 79,716.00$
[B] $2184 \mathrm{~m}, \$ 7,738.00$
[C] $212 \mathrm{~m}, \$ 7,738.00$
[D] $2184 \mathrm{~m}, \$ 79,716.00$
2. Find the area:

[A] $18.98 \mathrm{~cm}^{2}$
[B] $9.49 \mathrm{~cm}^{2}$
[C] $9.9 \mathrm{~cm}^{2}$
[D] $19.8 \mathrm{~cm}^{2}$
3. Your parents ask you to mow the lawn. It is a square plot that is 16 ft on each side and it has a square cement fountain in the center that is 6 ft on each side. What is the area of the lawn that you will mow?
4. A wire is bent into an equilateral triangle with a side measurment of 12 . The same length of wire is then bent into a square. Find the side measurements of the square.
5. A line is perpendicular to $y=\frac{x}{3}-2$ and passes through point $(-4,7)$. Write its equation.
6. Write the slope-intercept form of the equation of the line passing through the point $(5,-6)$ and parallel to the line $y=6 x+6$.
\qquad
\qquad
\qquad
7. Solve for x given $B D=\frac{7}{2} x+2$ and $A E=4 x+7$. Assume B is the midpoint of $\overline{A C}$ and D is the midpoint of $\overline{C E}$.

[A] $\frac{8}{3}$
[B] 1
[C] $-\frac{3}{8}$
[D] -1
8. Find the value of x.

9. Refer to the figure below.

\qquad
\qquad PD. \qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE
10. For the triangle shown, $V S=5$ and $V Q=6$. Then $P Q=$ \qquad _.

[A] 11
[B] 5
[C] 10
[D] 12
11. Given: $\overline{A B} \cong \overline{B C}$

A. Solve for x.B. Is the triangle equilateral?
12. Graph the figure with vertices $(-1,5),(-3,7),(-4,6)$, and $(-2,4)$. Draw the rotation image for a rotation of 90° clockwise about the origin.
13. Find the image of $\triangle A B C$ after the glide reflection described.

Translation: $(x, y) \rightarrow(x, y-2)$; Reflection: in $x=3$

14. Graph $\triangle P Q R$ with $P(-4,-3), Q(-4,-7)$, and $R(-7,-5)$. Graph $\Delta P^{\prime} Q^{\prime} R^{\prime}$ after the
\qquad
\qquad PD. \qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE
translation described by the vector $\langle 10,9\rangle$.
15. Find the midpoint of $\overline{Q R}$ using the following information: $\mathrm{Q}(-8,-7)$ and $R(4,-5)$.
16. The midpoint of $\overline{Q R}$ is $M(-1,-2)$. One endpoint is $Q(-6,0)$. Find the coordinates of the other endpoint.
17. In the figure shown, $m \angle A E D=122^{\circ}$. Which of the following statements is false?

[A] $\angle B E C$ and $\angle C E D$ are adjacent angles.
[B] $\angle A E B$ and $\angle D E C$ are vertical angles.
[C] $m \angle B E C=58^{\circ}$
[D] $m \angle A E B=58^{\circ}$
18. Find the values of x and y.

[A] $x=20^{\circ} ; y=80^{\circ}$
[B] $x=20^{\circ} ; y=100^{\circ}$
[C] $x=80^{\circ} ; y=60^{\circ}$
[D] $x=80^{\circ} ; y=100^{\circ}$
19. Which side lengths allow you to construct a triangle?
\qquad
\qquad PD. \qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE
[A] 2,3 , and 8
[B] 6,8 , and 10
[C] 4, 1, and 9
[D] 7, 2, and 2
20. Two sides of a triangle have lengths 7 and 13. The third side has a length that is \qquad .
$[\mathrm{A}]<20$ and >6
$[B]<6$
$[\mathrm{C}]>6$ and <13
[D] > 20
21. Given the triangles below, if $\overline{Z Y} \cong \overline{C B}, \overline{X Y} \cong \overline{A B}$, and $m \angle B>m \angle Y$, decide which statement is true.

[A] $Y Z>B C$
[B] $X Y<A B$
[C] $X Z<A C$
[D] $A C<X Z$
22. Which statement is false for the triangle in the diagram?
\qquad
\qquad PD. \qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE

[A] $L N>N P$
[B] $M N=N R$
[C] $L M=P R$
[D] $L N<N P$
23. Refer to the figure. What is the largest angle, that is part of a triangle, in the figure?

24. Rewrite the statement in if-then form.

All right triangles have an angle with a measure of 90 degrees.
[A] A figure has an angle with a measure of 90 degrees if and only if it is a right triangle.
[B] If a figure has an angle with a measure of 90 degrees, then it is a right triangle.
[C] A figure is a right triangle if and only if it has an angle with a measure of 90 degrees.
[D] If a figure is a right triangle, then it has an angle with a measure of 90 degrees.
25. "If an obtuse angle is bisected, then two acute angles are obtained." Decide whether the statement and its converse are true. If false, explain.
26. Which is a pair of parallel planes?
\qquad
\qquad
\qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE

[A] DEO and NHG
[B] $E F G$ and $N J I$
[C] EFG and $K M I$
[D] NJK and NJI
27. Use the figure below.

For the cube shown, $\overleftrightarrow{A D}$ and $\overleftrightarrow{H G}$ are \qquad .
[A] perpendicular lines
[B] oblique lines
[C] skew lines
[D] parallel lines
28. In the figure, $\angle 1$ and $\angle 2$ are \qquad .
\qquad
\qquad
\qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE

[A] corresponding angles
[B] consecutive interior angles
[C] alternate interior angles
[D] alternate exterior angles
29. In the figure, $\angle 6$ and $\angle 3$ are \qquad .

[A] consecutive interior angles
[B] corresponding angles
[C] alternate exterior angles
[D] alternate interior angles
30. In the figure, $\angle 6$ and $\angle 2$ are \qquad .
\qquad
\qquad
\qquad

[A] consecutive interior angles
[B] corresponding angles
[C] alternate interior angles
[D] alternate exterior angles
31. Classify $\triangle O P Q$.

[A] Equilateral
[B] Isosceles
[C] Scalene
[D] none of these
32. Find the value of x.
\qquad
\qquad
\qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE

[A] 231
[B] 51
[C] 66
[D] 117
33. Find the measure of the interior angles to the nearest tenth. (Drawing is not to scale.)

[A] $48.8^{\circ}, 42.3^{\circ}, 89.0^{\circ}$
[B] $44.8^{\circ}, 45.3^{\circ}, 90.0^{\circ}$
[C] $45.6^{\circ}, 48.4^{\circ}, 86.0^{\circ}$
[D] $46.3^{\circ}, 44.3^{\circ}, 89.5^{\circ}$
34. Given: $\angle B A C \cong \angle D A C, \angle B \cong \angle D$

Prove: $\overline{B C} \cong \overline{D C}$
\qquad
\qquad PD. GEOMETRY SEMESTER I FINAL EXAM PRACTICE

$\triangle A B D \cong \triangle C D B$
\qquad
\qquad PD. \qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE

Reference: [1.7.2.83]
[1] [C]

Reference: [1.7.1.81]
[2] [B]

Reference: [1.7.2.86]
[3] $220 \mathrm{ft}^{2}$

Reference: [1.7.2.85c]
[4] 9

Reference: [3.7.2.61b]
[5] $y=-3 x-5$

Reference: [3.6.2.45]
[6] $y=6 x-36$

Reference: [5.4.1.41]
[7] [B]

Reference: [4.1.2.14]
[8] 33°

Reference: [5.4.1.44]
[9] 28

Reference: [5.4.1.45]
[10] [C]

Reference: [4.1.1.9]
[11] A. $x=8$, B. No

Reference: [7.3.1.42]
\qquad
\qquad PD. \qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE
[12]

Reference: [7.5.1.72]

Reference: [7.4.2.61]
[14]

Reference: [1.5.1.56a]
[15] (-2,-6)
\qquad
\qquad PD. \qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE

Reference: [1.5.1.56b]
[16] (4, -4)

Reference: [1.6.1.62]
[17] [C]
Reference: [4.6.1.83]
[18] [A]

Reference: [5.5.2.57]
[19] [B]

Reference: [5.5.2.59]
[20] [A]

Reference: [5.6.2.66]
[21] [C]

Reference: [5.6.2.68]
[22] [A]

Reference: [5.6.2.70]
[23] $\angle B C A$

Reference: [2.1.1.3]
[24] [D]
Reference: [2.1.1.6]
[25] Statement is true, converse is false. An acute angle bisected produces acute angles, also.

Reference: [3.1.1.1]
[26] [C]

Reference: [3.1.1.5]
[27] [C]

Reference: [3.1.2.8]
[28] [D]
\qquad
\qquad
\qquad GEOMETRY SEMESTER I FINAL EXAM PRACTICE

Reference: [3.1.2.9]
[29] [A]

Reference: [3.1.2.10]
[30] [B]

Reference: [13.4.76]
[31] [B]

Reference: [13.4.80]
[32] [C]

Reference: [13.4.81]
[33] [D]
Reference: [13.4.94]

1. $\angle B A C \cong \angle D A C, \angle B \cong \angle D \mid$ 1. Given
2. $\overline{A C} \cong \overline{A C}$
[34] 3. $\triangle A B C \cong \triangle A D C$
3. $\overline{B C} \cong \overline{D C}$
4. Given
5. Reflexive Property
6. AAS Congruence Theorem
7. Congruent Parts of Congruent
Triangles are Congruent

Reference: [4.3.1.60]

1. $\overline{A B} \cong \overline{C D}$
2. Given
[35]
3. $\overline{B D} \cong \overline{B D}$
4. Reflexive Property of Congruence
5. $\overline{A B} \| \overline{C D}$
6. Given
7. $\angle A B D \cong \angle C D B$
8. Alternate Interior Angles Theorem
9. $\triangle A B D \cong \triangle C D B$
10. SAS Congruence Postulate
