\qquad

Section 5.1 Perpendiculars and Bisectors

A segment, ray, line, or plane that is \qquad to a segment at its \qquad is called a
\qquad —.
A point is \qquad from \qquad points if its distance from each point is the same. The \qquad from a \qquad to a \qquad is defined as the length of the \qquad segment from the point to the line.
When a point is the same distance from a line as it is from another line, then the point is \qquad from the \qquad lines (or rays or segments).

Perpendicular Bisector Theorem: If a point is on the perpendicular \qquad of a segment, then it is
\qquad from the endpoints of the segment.
Converse of the Perpendicular Bisector Theorem: If a point is \qquad from the endpoints of a segment, then it is on the perpendicular \qquad of the segment.
Angle Bisector Theorem: If a point is on the \qquad of an angle, then it is \qquad from the two \qquad of the angle.
Converse of the Angle Bisector Theorem: If a point is in the interior of an angle and is \qquad from the two \qquad of the angle, then it lies on the \qquad of the angle.

Example 1: Use the diagram shown. In the diagram, $\overleftrightarrow{A B}$ is the perpendicular bisector of $\overline{C D}$. Find the values of x and y. Determine whether or not point E is on $\overleftrightarrow{A B}$.

Example 2: Determine the correct measurement for $\angle \mathrm{DCB}, \overline{F E}$, and $\overline{A C}$.

Section 5.2 Bisectors of a Triangle

A \qquad of a triangle is a line (or ray or segment) that is \qquad to a side of the triangle at the \qquad of the side.

When \qquad or more lines (or rays or segments) intersect in the same \qquad they are called
\qquad
The point of intersection of \qquad lines is called the point of \qquad .
An \qquad of a triangle is a \qquad of an angle of the triangle.

The point of \qquad of the angle bisectors is called the \qquad of the triangle.

The point of \qquad of the perpendicular bisectors is called the \qquad of the Δ.

Concurrency of Perpendicular Bisectors of a Triangle Theorem: The perpendicular bisectors of a triangle \qquad at a point that is \qquad from the \qquad of the triangle.
Concurrency of Angle Bisectors of a Triangle Theorem: The angle bisectors of a triangle
\qquad at a point that is \qquad from the \qquad of the triangle.

Example 3: The perpendicular bisectors of $\triangle A B C$ meet at point D. Find $D B$ and $A E$.

Example 4: The angle bisectors of $\triangle \mathrm{ABC}$ meet at point D.
Find DE.

Section 5.3 Medians and Altitudes of a Triangle

A \qquad of a triangle is a segment whose endpoints are a vertex of the triangle and the \qquad of the opposite side.
The point of \qquad of the three medians of a triangle is called the \qquad of the triangle.

An \qquad of a triangle is the \qquad segment from a vertex to the \qquad side or to the line that contains the \qquad side.

The lines containing the three \qquad are \qquad and intersect at a point called the
\qquad of the triangle.

Concurrency of Medians of a Triangle Theorem - The \qquad of a triangle are \qquad at a point that is \qquad of the distance from each vertex to the midpoint of the opposite side.

Concurrency of Altitudes of a Triangle - The lines containing the \qquad of a triangle are concurrent.

Example 5: D is the centroid of $\triangle \mathrm{ABC}$ and $\mathrm{DG}=4$. Find BG and BD.

Example 6: Find the coordinates of the centroid of $\triangle \mathrm{ABC}$.

A \qquad of a triangle is a segment that connects the \qquad of two sides of a triangle.
Midsegment Theorem - The segment connecting the \qquad of two sides of a triangle is
\qquad to the third side and is \qquad as long.

Example 7: $\overline{J K}$ and $\overline{K L}$ are midsegments of $\triangle \mathrm{ABC}$. Find $J K$ and $A B$.

Example 8: $\overline{D E}$ is a midsegment of $\triangle \mathrm{ABC}$. Find the coordinates of D and E and show that $\overline{D E}$ is parallel to $\overline{A B}$.

Section 5.5 Inequalities in One Triangle

Theorem 5.10 - If one side of a triangle is \qquad than another side, then the \qquad opposite the longer side is \qquad than the angle \qquad the shorter side.
Theorem 5.11 - If one angle of a triangle is \qquad than another angle, then the \qquad opposite the larger angle is \qquad than the side \qquad the smaller angle.
Exterior Angle Inequality Theorem - The measure of an \qquad angle of a triangle is \qquad than the measure of \qquad of the two nonadjacent \qquad angles.
Triangle Inequality Theorem - The sum of the lengths of any \qquad of a triangle is \qquad than the \qquad of the third side.

Example 9: Write the measurements of $\triangle \mathrm{ABC}$ In order from least to greatest.

Example 10: A triangle has one side of 12 inches and another side of 16 Inches. Find the possible lengths of the third side.

