Chapter 5 Notes – Properties of Triangles

Name

Section 5.1 Perpendiculars and Bisectors

A segment, ray, line, or plane that is ______ to a segment at its ______ is called a A point is ______ from _____ points if its distance from each point is the same. The ______ from a _____ to a _____ is defined as the length of the _____ segment from the point to the line. When a point is the same distance from a line as it is from another line, then the point is ______ from the _____ lines (or rays or segments). *Perpendicular Bisector Theorem:* If a point is on the perpendicular ______ of a segment, then it is _____ from the endpoints of the segment. *Converse of the Perpendicular Bisector Theorem:* If a point is from the endpoints of a segment, then it is on the perpendicular ______ of the segment. Angle Bisector Theorem: If a point is on the ______ of an angle, then it is ______ from the two _____ of the angle. *Converse of the Angle Bisector Theorem:* If a point is in the interior of an angle and is _____ from the two ______ of the angle, then it lies on the ______ of the angle. **Example 1:** Use the diagram shown. In the diagram, \overrightarrow{AB} is the perpendicular bisector of \overrightarrow{CD} . Find the values of x and y. Determine whether or not point E is on \overrightarrow{AB} . **Example 2:** Determine the correct measurement for $\angle DCB$, \overline{FE} , and \overline{AC} .

55° 20

Section 5.2 Bisectors of a Triangle

A ______ of a triangle is a line (or ray or segment) that is ______

to a side of the triangle at the _____ of the side.

When ______ or more lines (or rays or segments) intersect in the same ______, they are called lines (or rays or segments).

The point of intersection of ______ lines is called the point of ______.

An ______ of a triangle is a ______ of an angle of the triangle.

The point of ______ of the angle bisectors is called the ______ of the triangle.

The point of ______ of the perpendicular bisectors is called the ______ of the Δ .

Concurrency of Perpendicular Bisectors of a Triangle Theorem: The perpendicular bisectors of a triangle ______ at a point that is ______ from the ______ of the triangle. Concurrency of Angle Bisectors of a Triangle Theorem: The angle bisectors of a triangle ______ at a point that is ______ from the ______ of the triangle.

Example 3: The perpendicular bisectors of $\triangle ABC$ meet at point *D*. Find *DB* and *AE*.

Example 4: The angle bisectors of \triangle ABC meet at point *D*. Find DE.

Section 5.3 Medians and Altitudes of a Triangle

A ______ of a triangle is a segment whose endpoints are a vertex of the triangle and the ______ of the opposite side. The point of _______ of the three medians of a triangle is called the _______ of the triangle. An _______ of a triangle is the _______ segment from a vertex to the _______ side or to the line that contains the _______ side. The lines containing the three _______ are ______ and intersect at a point called the _______

Concurrency of Medians of a Triangle Theorem - The ______ of a triangle are ______ at a point that is ______ of the distance from each vertex to the midpoint of the opposite side.

Concurrency of Altitudes of a Triangle - The lines containing the ______ of a triangle are concurrent.

Example 5: D is the centroid of \triangle ABC and DG = 4. Find BG and BD. **Example 6:** Find the coordinates of the centroid of $\triangle ABC$.

Section 5.4 Midsegment Theorem

A ______ of a triangle is a segment that connects the ______ of two sides of a triangle. **Midsegment Theorem -** The segment connecting the ______ of two sides of a triangle is

_____ to the third side and is _____ as long.

Example 7: \overline{JK} and \overline{KL} are midsegments of $\triangle ABC$. Find *JK* and *AB*.

Example 8: \overline{DE} is a midsegment of $\triangle ABC$. Find the coordinates of *D* and *E* and show that \overline{DE} is parallel to \overline{AB} .

Section 5.5 Inequalities in One Triangle

Theorem 5.10 – If one side of a triangle is ______ than another side, then the _____ opposite the longer side is ______ than the angle ______ the shorter side.

Theorem 5.11 – If one angle of a triangle is ______ than another angle, then the ______ opposite the larger angle is ______ than the side ______ the smaller angle.

Exterior Angle Inequality Theorem – The measure of an ______ angle of a triangle is ______ than the measure of ______ of the two nonadjacent ______ angles.

Triangle Inequality Theorem – The sum of the lengths of any ______ of a triangle is ______ than the ______ of the third side.

Example 9: Write the measurements of $\triangle ABC$ In order from least to greatest.

Example 10: A triangle has one side of 12 inches and another side of 16 Inches. Find the possible lengths of the third side.