1. Given: \overrightarrow{CD} is the perpendicular bisector of \overrightarrow{HJ} . Name three things that you can conclude.

4. Identify the point of concurrency for each of the following AND define:
Perpendicular bisector:_________
angle bisector: _________
median: _________
altitude: _______

2. \overrightarrow{NO} is the perpendicular bisector of \overrightarrow{LM} . If OM = 4 and LN = 6, then LO =_____ and MN =_____.

3. Refer to the figure below.

Given: $\overline{AF} \cong \overline{FC}$, $\angle ABE \cong \angle EBC$. Identify each of the following in the figure: Line GF: ______ Ray BE: ______ Line Segment BF: ______ Line Segment BD: ______

5. Given: \overrightarrow{AE} bisects $\angle DAB$. Find *ED* if CB = 16 and CE = 30. (not drawn to scale)

[A] 480 [B] 46 [C] 34 [D] 14

6. In the figure (not drawn to scale), \overline{MO} bisects $\angle LMN$, $m\angle LMO = 15x - 21$, and $m\angle NMO = x + 63$. Solve for *x* and find $m\angle LMN$.

[A] 6, 138° [B] 3, 24° [C] 6, 111° [D] 3, 27°

NAME _

_____ DATE____ PD. ____ GEOMETRY CHAPTER 5 PRACTICE TEST

- 7. \overrightarrow{OE} bisects $\angle BOA$, $\overrightarrow{EA} \perp \overrightarrow{OA}$, and $\overrightarrow{EB} \perp \overrightarrow{OB}$. Which statement is NOT true?
- $[A] \angle AEO \cong \angle BEO$
- $[B] \angle AOE \cong \angle EAO$
- $[C] \overline{AE} \cong \overline{BE}$
- $[D] \ \overline{OA} \ \cong \ \overline{OB}$
- 8. Solve for x given BD = 3x + 2 and AE = 4x + 8. Assume B is the midpoint of \overline{AC} and D is the midpoint of \overline{CE} .

9. For the given triangle, state the relationships between \overline{AB} and

10. For the triangle shown, VS = 5 and VQ = 6. Then PQ =_____.

[A] 11 [B] 5 [C] 10 [D] 12

11. Identify the longest side of $\triangle ABC$.

Given: $AB \cong AD$, BE > EDWhat is the relationship (<, >, or =) between $m \angle BAE$ and $m \angle DAE$?

13. Two sides of a triangle have lengths 8 and 11. What are the possible lengths of the third side x?

<u>-</u>____

14. Which of these lengths could be the sides of a triangle?

[A] 13 cm, 19 cm, 4 cm

[B] 19 cm, 9 cm, 11 cm

[C] 19 cm, 13 cm, 5 cm

[D] 9 cm, 19 cm, 10 cm

15. Which statement is false for the triangle in the diagram?

- [A] LN > NP [B] MN = NR
- [C] LM = PR [D] LN < NP

16. Refer to the figure. What is the largest angle that is part of a triangle in the

17. Find the appropriate symbol to place in the blank. (not drawn to scale)

AB_AC

18. Refer to the figure. Choose the correct

[A] x > 13 [B] x < 10

[C] x = 13 [D] 10 < x < 13

19. What is the measure of each base angle of an isosceles triangle if its vertex angle measures 42 degrees and its 2 congruent sides measure 21 units?

[A] 42°
[B] 138°
[C] 48°
[D] 69°

[A] Isosceles [B] Acute

[C] Obtuse [D] Equilateral

21. Find the slope-intercept form of the the line passing through the point (3, -5) and parallel to the line y = -4x + 2.

[A]
$$y = 4x - 7$$
 [B] $y = -4x - 17$
[C] $y = \frac{1}{4}x - \frac{23}{4}$ [D] $y = -4x + 7$

22. The line $y = -\frac{1}{2}x + 3$ is perpendicular to which line?

[A]
$$y = -2x$$
 [B] $y = 2x - 3$
[C] $y = -\frac{1}{2}x + 6$ [D] $y = \frac{1}{2}x + 1$

23. In the figure shown, $m \angle AED = 122^{\circ}$. Which of the following statements is false?

[A] $\angle BEC$ and $\angle CED$ are adjacent angles.

[B] $\angle AEB$ and $\angle DEC$ are vertical angles.

[C] $m \angle BEC = 58^{\circ}$

[D] $m \angle AEB = 58^{\circ}$

24. In the figure, $l \parallel n$ and *r* is a transversal. Which of the following is not necessarily true?

- $[A] \ \angle 7 \cong \angle 4$
- $[B] \angle 2 \cong \angle 6$
- $[C] \ \angle 8 \cong \angle 2$
- [D] $\angle 5 \cong \angle 3$
- 25. Given: $\angle DCA \cong \angle BCA$, $\angle B \cong \angle D$ Prove: $\overline{AB} \cong \overline{AD}$

NAME _____

_____ DATE____ PD. ____ GEOMETRY CHAPTER 5 PRACTICE TEST

Reference: [5.1.1.1] [1] Any three of the following: $\overline{CD} \perp \overline{HJ}$; $\angle CIJ$, $\angle JID$, $\angle DIH$, and $\angle HIC$ are rt $\angle s$; *I* is the midpoint of \overline{HJ} ; $\overline{HI} \cong \overline{IJ}$; *CH* = *CJ*, *DH* = *DJ*

Reference: [5.2.1.6a] [2] LO = 4, MN = 6; $\Delta LNO \cong \Delta MNO$ by SAS, so corresp. parts of congruent triangles are congruent.

Reference: [5.2.1.12a] [3] perpendicular bisector, angle bisector, median, altitude

Reference: [5.2.1.13a]

[4] circumcenter; a point equidistant from the vertices of the triangle.

incenter; a point equidistant from the sides of the triangle.

centroid; two-thirds the distance from each vertex to the midpoint of the opposite side. orthocenter: perpendicular segment from a vertex to the opposite side of the triangle.

Reference: [5.2.2.18] [5] [C]

Reference: [5.2.2.19] [6] [A]

Reference: [5.2.2.22] [7] [B]

Reference: [5.4.1.40] [8] 2

[9]
$$\overline{AB} \parallel \overline{DF}$$
 and $AB = \frac{1}{2}DF$

Reference: [5.4.1.45] [10] [C]

Reference: [5.5.1.50][11] \overline{CB}

Reference: [5.5.1.53] $[12] m \angle BAE > m \angle DAE$

Reference: [5.5.2.58] [13] 3 < *x* < 19

Reference: [5.5.2.64] [14] [B]

Reference: [5.6.2.68] [15] [A]

Reference: [5.6.2.69] [16] ∠*ACD*

Reference: [5.6.2.71] [17] >

Reference: [5.6.2.72] [18] [A]

Reference: [4.6.1.78] [19] [D]

Reference: [4.6.1.81] [20] [C]

Reference: [5.4.1.47]

Reference: [3.6.2.46] [21] [D]

Reference: [3.7.1.54] [22] [B]

Reference: [1.6.1.62] [23] [C]

Reference: [3.3.1.18] [24] [A]

Reference: [4.4.1.68][25]1. $\angle DCA \cong \angle BCA, \angle B \cong \angle D$ 2. $\overline{AC} \cong \overline{AC}$ 3. $\triangle ABC \cong \triangle ADC$ 4. $\overline{AB} \cong \overline{AD}$ 4. $\overline{AB} \cong \overline{AB}$ 4. $\overline{AB} \cong \overline$