\qquad
\qquad PD. \qquad
GEOMETRY CHAPTER 5 PRACTICE TEST

1. Given: $\overleftrightarrow{C D}$ is the perpendicular bisector of $\overline{H J}$. Name three things that you can conclude.

2. $\overleftrightarrow{N O}$ is the perpendicular bisector of $\overline{L M}$. If $O M=4$ and $L N=6$, then $L O=$ and $M N=$ \qquad .

3. Refer to the figure below.

Given: $\overline{A F} \cong \overline{F C}, \angle A B E \cong \angle E B C$.
Identify each of the following in the figure:
Line GF: \qquad
Ray BE: \qquad
Line Segment BF: \qquad
Line Segment BD: \qquad
4. Identify the point of concurrency for each of the following AND define:
Perpendicular bisector: \qquad angle bisector: \qquad median: \qquad altitude: \qquad
5. Given: $\overrightarrow{A E}$ bisects $\angle D A B$. Find $E D$ if $C B=16$ and $C E=30$. (not drawn to scale)

[A] 480 [B] 46 [C] 34 [D] 14
6. In the figure (not drawn to scale), $\overrightarrow{M O}$ bisects $\angle L M N, m \angle L M O=15 x-21$, and $m \angle N M O=x+63$. Solve for x and find $m \angle L M N$.

$$
\begin{array}{ll}
{[\mathrm{A}] 6,138^{\circ}} & \text { [B] 3, 24} \\
{[\mathrm{C}] 6,111^{\circ}} & \text { [D] 3, } 27^{\circ}
\end{array}
$$

\qquad
\qquad PD. \qquad
7. $\overrightarrow{O E}$ bisects $\angle B O A, \overline{E A} \perp \overline{O A}$, and $\overline{E B}$
$\perp \overline{O B}$. Which statement is NOT
true?

[A] $\angle A E O \cong \angle B E O$
[B] $\angle A O E \cong \angle E A O$
[C] $\overline{A E} \cong \overline{B E}$
[D] $\overline{O A} \cong \overline{O B}$
8. Solve for x given $B D=3 x+2$ and $A E=4 x+8$. Assume B is the midpoint of $\overline{A C}$ and D is the midpoint of $\overline{C E}$.

9. For the given triangle, state the relationships between $\overline{A B}$ and

10. For the triangle shown, $V S=5$ and $V Q=$
6. Then $P Q=$ \qquad -.

[A] 11 [B] 5 [
[C] 10
[D] 12

11. Identify the longest side of $\triangle A B C$.

12. Refer to the figure.

Given: $\overline{A B} \cong \overline{A D}, B E>E D$ What is the relationship (<, >, or =) between $m \angle B A E$ and $m \angle D A E$?
13. Two sides of a triangle have lengths 8 and 11. What are the possible lengths of the third side x ?
\qquad
\qquad PD. \qquad
GEOMETRY CHAPTER 5 PRACTICE TEST
14. Which of these lengths could be the sides of a triangle?
[A] $13 \mathrm{~cm}, 19 \mathrm{~cm}, 4 \mathrm{~cm}$
[B] $19 \mathrm{~cm}, 9 \mathrm{~cm}, 11 \mathrm{~cm}$
[C] $19 \mathrm{~cm}, 13 \mathrm{~cm}, 5 \mathrm{~cm}$
[D] $9 \mathrm{~cm}, 19 \mathrm{~cm}, 10 \mathrm{~cm}$
15. Which statement is false for the triangle in the diagram?

[A] $L N>N P[B] M N=N R$
[C] $L M=P R$ [D] $L N<N P$
16. Refer to the figure. What is the largest angle that is part of a triangle in the figure?
17. Find the appropriate symbol to place in the blank. (not drawn to scale)
$A B \ldots A C$

18. Refer to the figure. Choose the correct statement.

[A] $x>13$ [B] $x<10$
[C] $x=13$ [D] $10<x<13$
19. What is the measure of each base angle of an isosceles triangle if its vertex angle measures 42 degrees and its 2 congruent sides measure 21 units?

[A] 42°
[B] 138°
[C] 48°
[D] 69°
\qquad
\qquad PD. \qquad
[A] $\angle B E C$ and $\angle C E D$ are adjacent angles.
20. In $\triangle A B C, \overline{A B} \cong \overline{B C}$, which term does NOT describe the triangle?

[A] Isosceles [B] Acute
[C] Obtuse [D] Equilateral
21. Find the slope-intercept form of the the line passing through the point $(3,-5)$ and parallel to the line $y=-4 x+2$.
[A] $y=4 x-7 \quad$ [B] $y=-4 x-17$
[C] $y=\frac{1}{4} x-\frac{23}{4} \quad[D] y=-4 x+7$
22. The line $y=-\frac{1}{2} x+3$ is perpendicular to which line?
[A] $y=-2 x[B] y=2 x-3$
[C] $y=-\frac{1}{2} x+6$
[D] $y=\frac{1}{2} x+1$
[C] $\angle 8 \cong \angle 2$
[D] $\angle 5 \cong \angle 3$
23. In the figure shown, $m \angle A E D=122^{\circ}$. Which of the following statements is false?

[B] $\angle A E B$ and $\angle D E C$ are vertical angles.
[C] $m \angle B E C=58^{\circ}$
[D] $m \angle A E B=58^{\circ}$
24. In the figure, $l \| n$ and r is a transversal. Which of the following is not necessarily true?

[A] $\angle 7 \cong \angle 4$
[B] $\angle 2 \cong \angle 6$
25. Given: $\angle D C A \cong \angle B C A, \angle B \cong \angle D$ Prove: $\overline{A B} \cong \overline{A D}$

NAME \qquad DATE \qquad PD. \qquad
GEOMETRY CHAPTER 5 PRACTICE TEST

Reference: [5.1.1.1]
[1] Any three of the following: $\overline{C D} \perp \overline{H J}$; $\angle C I J, \angle J I D, \angle D I H$, and $\angle H I C$ are $\mathrm{rt} \angle \mathrm{s}$; I is the midpoint of $\overline{H J} ; \overline{H I} \cong \overline{I J} ; \quad C H$ $=C J, D H=D J$

Reference: [5.2.1.6a]
[2] $L O=4, M N=6 ; \triangle L N O \cong \triangle M N O$ by SAS, so corresp. parts of congruent triangles are congruent.

Reference: [5.2.1.12a]
[3] perpendicular bisector, angle bisector, median, altitude

Reference: [5.2.1.13a]
[4] circumcenter; a point equidistant from the vertices of the triangle.
incenter; a point equidistant from the sides of the triangle.
centroid; two-thirds the distance from each vertex to the midpoint of the opposite side. orthocenter: perpendicular segment from a vertex to the opposite side of the triangle.

Reference: [5.2.2.18]

[5] [C]
Reference: [5.2.2.19]
[6] [A]

Reference: [5.2.2.22]
[7] [B]

Reference: [5.4.1.40]
[8] 2
[9] $\overline{A B} \| \overline{D F}$ and $A B=\frac{1}{2} D F$

Reference: [5.4.1.45]
[10] [C]

Reference: [5.5.1.50]
[11] $\overline{C B}$

Reference: [5.5.1.53]
[12] $m \angle B A E>m \angle D A E$

Reference: [5.5.2.58]
[13] $3<x<19$

Reference: [5.5.2.64]
[14] [B]

Reference: [5.6.2.68]
[15] [A]

Reference: [5.6.2.69]
[16] $\angle A C D$

Reference: [5.6.2.71]

[17] >

Reference: [5.6.2.72]
[18] [A]

Reference: [4.6.1.78]
[19] [D]

Reference: [4.6.1.81]
[20] [C]

Reference: [5.4.1.47]
\qquad
\qquad PD. \qquad

Reference: [3.6.2.46]
[21] [D]

Reference: [3.7.1.54]
[22] [B]

Reference: [1.6.1.62]
[23] [C]

Reference: [3.3.1.18]
[24] [A]

Reference: [4.4.1.68]
[25]

1. $\angle D C A \cong \angle B C A, \angle B \cong \angle D \mid 1$. Given
2. $\overline{A C} \cong \overline{A C}$
3. $\triangle A B C \cong \triangle A D C$
4. $\overline{A B} \cong \overline{A D}$
5. Reflexive Property
6. AAS Congruence Theorem
7. Congruent Parts of Congruent Triangles are Congruent
