\qquad Date \qquad Class \qquad

Section 1.1 - Introduction Worksheet 1

Understanding Points, Lines, and Planes (undefined terms in geometry)
A point has no size. It is named using a capital letter. All the figures below contain points.

$\bullet P$
point P

Figure	Characteristics	Diagram	Symbols
line	0 endpoints extends forever in two directions	$\stackrel{\bullet}{\bullet} \xrightarrow[B]{\bullet}$	$\stackrel{\rightharpoonup}{A B}$
line segment or segment	2 endpoints has a finite length	$\stackrel{\bullet}{x}$	$\overline{X Y}$
ray	1 endpoint extends forever in one direction	$\stackrel{Q}{\bullet}$	$\overrightarrow{R Q}$ A ray is named starting with its endpoint.
plane	extends forever in all directions		FGH (3 or more letters) V (Capital cursive letter)

Draw and label a diagram for each figure.

1. point W
2. $\overline{J K}$

Name each figure using symbols.
5.

6.

7. Name the plane in two different ways.

8.

\qquad
\qquad Class \qquad

Understanding Points, Lines, and Planes continued

Term	Meaning	Model
collinear	points that lie on the same line	
noncollinear	points that do not lie on the same line	F and G are collinear. F, G, and H are noncollinear.
coplanar	points or lines that lie in the same plane	
noncoplanar	points or lines that do not lie in the same plane	W, X, and Y are coplanar. W, X, Y, and Z are noncoplanar. 3 noncollinear points form a plane.

Figures that intersect share a common set of points. In the first model above, FH intersects $\overline{F G}$ at point F. In the second model, $\overline{X Z}$ intersects plane $W X Y$ at point X.

Use the figure for Exercises 9-14. Name each of the following.

9. three collinear points
\qquad
11. four coplanar points
\qquad
13. two lines that intersect $\overrightarrow{C D}$
\qquad
\qquad
\qquad Class \qquad

Section 1.1 Worksheet 2

Understanding Points, Lines, and Planes

Fill in the blank with the appropriate vocabulary.

1. Name the points that determine plane $A B C$. \qquad
2. Two points determine one \qquad .
3. Collinear points lie on the same \qquad .
4. Three noncollinear points determine a \qquad .
5. Coplanar points lie in the same \qquad .

Answer each question.

6. How are a line and a line segment the same?
7. How are a line and a line segment different?
8. How are a line segment and a ray the same?
9. How are a line segment and a ray different?

Choose the best answer.
10. In a building, planes \mathscr{W}, \mathcal{X}, and \mathscr{Y} represent each of the three floors; planes \mathscr{Q} and \mathscr{R} represent the front and back of the building; planes \mathcal{S} and \mathscr{T} represent the sides. Which is a true statement?
A Planes \mathscr{W} and \mathscr{Y} intersect in a line.
B Planes Q and \mathscr{X} intersect in a line.
C Planes \mathscr{W}, \mathcal{X} and \mathscr{T} intersect in a point.
D Planes \mathscr{Q}, \mathscr{R}, and \mathcal{S} intersect in a point.
11. Suppose point G represents a duck flying over a lake, points H and J represent two ducks swimming on the lake, and plane z represents the lake. Which is a true statement?
F There are two lines through G and J.
G The line containing G and H lies in plane z
H G, H, and J are noncoplanar.
J There is exactly one plane containing points G, H, and J.
\qquad
\qquad
\qquad

Section 1.1 Worksheet 3

Understanding Points, Lines, and Planes

Use the figure for Exercises 1-3.

1. "This is plane HIJ." Explain why this statement is incorrect.
\qquad
\qquad
2. Name the plane.

3. Give six names for the line.
4. Explain why $\overrightarrow{S T}$ and $\overrightarrow{T S}$ are or are not the same figure.
5. Explain why $\overrightarrow{S T}$ and $\overrightarrow{T S}$ are or are not opposite rays.
6. Imagine $\overrightarrow{S T}$ and $\overrightarrow{T S}$ drawn in the same plane. Taken together, what kind of figure do the rays form? \qquad
7. Name three undefined terms in geometry. \qquad
Postulates are basic true statements accepted without proof. Each statement below is incorrect. Rewrite each statement so that it is true.
8. Through any three points there is exactly one plane containing them.
9. If two planes intersect, then they intersect in exactly one plane.
10. A frame holding two pictures sits on a table. Which is NOT a true statement?

A $\overline{P N}$ and $\overline{N M}$ lie in plane \mathscr{J}
B $\overline{P N}$ and $\overline{N M}$ intersect in a point.
C $\overline{L M}$ and N intersect in a line.
D P and $\overline{N M}$ are coplanar.

\qquad
\qquad Class \qquad

Section 1.1 Worksheet 4

Understanding Points, Lines, and Planes

Lines in a plane divide the plane into regions. The number of regions depends on the relationship between the lines. Consider two lines in a plane.

1. a. Complete the table.
b. Describe the pattern in the table.

Number of lines in a plane	0	1	2	3	4
Greatest number of regions determined			4		

c. Predict the greatest number of regions determined by five lines in a plane.
d. Make a drawing to verify your prediction from part c .
2. You can use an approach similar to the one in Exercise 5 to investigate the greatest possible number of points of intersection for n lines in a plane. Make a table and look for a pattern. What is the greatest possible number of points of intersection for six lines in a plane?
\qquad
\qquad
\qquad
HW from Textbook.
Pp. 9-11 \# 7,8,13,16,25-27,31-34,36,39-41,43,44
(7)

(13) A, B, E

(25) u (26) u (23) u
(31) Always (32) Never (33) Always (39) Sometimes
(36) $1 / 4$
$A, B, C \leftarrow$ anly collinear
A, C, D

$$
\text { so, } \frac{1}{4}
$$

A, B, D
B. C, D
(39) C (40) F (41) D
(43) 6 (44) 45
\qquad

$$
1 \longrightarrow_{+2}^{3} \underset{+3}{ } 6 \underset{+4}{ } 10 \underset{+5}{ } 15
$$

\qquad
\qquad
\qquad

Answers for Section 1.1 Worksheets

Worksheet 1

1. $\cdot W$

2. line $C D$ or $\overrightarrow{C D}$
3. ray $S T$ or $\overrightarrow{S T}$
4. plane $L M N$; plane Q
5. segment $W X ; \overline{W X}$
6. Possible answers: A, P, and $B ; C, P$, and $D ; J, D$, and K
7. Sample answer: A, P, and D
8. Sample answer: C, P, B, and D
9. Sample answer: J, D, P, and B
10. $\overparen{A B}$ and $\overrightarrow{J K}$
11. point D

Worksheet 2

1. line
2. line
3. plane
4. plane
5. A line segment is a specific portion of a line that begins and ends.
6. A line goes on forever in both directions, while a segment has endpoints.
7. A ray and a line segment are both parts of a line.
8. A line segment has 2 endpoints. A ray has 1 endpoint and extends forever in one direction.
9. B
10. J

Worksheet 3

1. A plane is named with three noncollinear points. H, I, and J are collinear.
2. Possible answers: plane HIK; plane HJK; plane IJK
3. $\vec{H}, \overrightarrow{H J}, \overrightarrow{I J}, \overrightarrow{I H}, \overrightarrow{J H}$, and \vec{J}
4. $\overrightarrow{S T}$ and $\overrightarrow{T S}$ are not the same figure because $\overrightarrow{S T}$ has its endpoint at S and $\overrightarrow{T S}$ has its endpoint at T.
5. $\overrightarrow{S T}$ and $\overrightarrow{T S}$ are not opposite rays because they do not have the same endpoint.
6. a line
7. point, line, plane
8. Through any three noncollinear points there is exactly one plane containing them.
9. If two planes intersect, then they intersect in exactly one line.
10. C
\qquad
\qquad Class \qquad 1

Number of lines in a plane	0	1	2	3	4
Greatest number of regions determined	1	2	4	7	11

1b. Sample answer: The pattern is one of increasing differences.
1c. 16 regions $(16-11=5)$
1d. Answer: 5d. Drawings will vary.
2. 15

