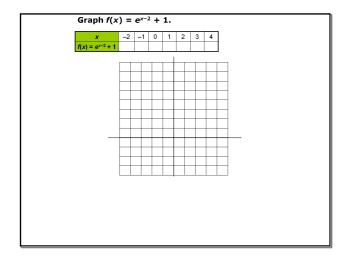
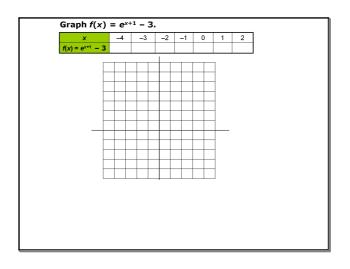

The Natural Base, e Lesson Objective: Use the number e to write and graph exponential functions representing real-world situations. Solve equations and problems involving e or natural logarithms.




Apr 22-6:21 AM Apr 22-6:30 AM

Apr 22-6:32 AM Apr 22-6:32 AM

Apr 22-6:32 AM Apr 22-6:33 AM

A logarithm with a base of *e* is called a **natural logarithm** and is abbreviated as "ln" (rather than as log_e). Natural logarithms have the same properties as log base 10 and logarithms with other bases.

The <u>natural logarithmic</u> <u>function</u> $f(x) = \ln x$ is the inverse of the natural exponential function $f(x) = e^x$.

Apr 22-6:33 AM

The domain of $f(x) = \ln x$ is $\{x | x > 0\}$.

The range of $f(x) = \ln x$ is all real numbers.

All of the properties of logarithms from Lesson 7-4 also apply to natural logarithms.

Apr 22-6:34 AM

Simplify.

A. In $e^{0.15t}$

B. $e^{3\ln(x+1)}$

C. In e^{2x} + In e^{x}

D. In e^{3x} - In e^{x}

Simplify.

a. In $e^{3.2}$

b. $e^{2\ln x}$

c. In $e^{x + 4y}$

d. In *e*^x - ^{3x}

Apr 22-6:35 AM

Apr 22-6:35 AM

End of Part 1