\qquad
\qquad Class \qquad

LEssom Reteach

6-5
 Finding Real Roots of Polynomial Equations

To find the roots of a polynomial equation, set the equation equal to zero. Factor the polynomial expression completely. Then set each factor equal to zero to solve for the variable.
Solve the equation: $2 x^{5}+6 x^{4}=8 x^{3}$.
Step 1 To set the equation equal to 0 , rearrange the equation so that all the terms are on one side.
$2 x^{5}+6 x^{4}=8 x^{3}$
$2 x^{5}+6 x^{4}-8 x^{3}=0$
Step 2 Look for the greatest number and the greatest power of x that can be factored from each term.
$2 x^{5}+6 x^{4}-8 x^{3}=0$

$2 x^{3}\left(x^{2}+3 x-4\right)=0$

Step 3 Factor the quadratic.

$$
\begin{aligned}
& 2 x^{3}\left(x^{2}+3 x-4\right)=0 \\
& 2 x^{3}(x+4)(x-1)=0
\end{aligned}
$$

Step 4 Set each factor equal to 0 .

$$
2 x^{3}=0 \quad x+4=0 \quad x-1=0
$$

Step 5 Solve each equation.

$$
\left.\begin{array}{rlrl}
2 x^{3} & =0 & x+4 & =0 \\
x & =0 & x & =-4
\end{array}\right)=0
$$

The solutions of the equation are called the roots.
The roots are $-4,0$, and 1 .

Solve each polynomial equation.

1. $3 x^{6}-9 x^{5}=30 x^{4}$
$3 x^{6}-9 x^{5}-30 x^{4}=0$
2. $x^{4}+6 x^{2}=5 x^{3}$
$x^{4}-5 x^{3}+6 x^{2}=0$
$3 x^{4}\left(x^{2}-3 x-10\right)=0$ \qquad
\qquad
3. $2 x^{3}-6 x^{2}-36 x=0$
4. $2 x^{6}-32 x^{4}=0$
\qquad
\qquad
\qquad
\qquad Date \qquad Class \qquad

LEssom Reteach

6-5 Finding Real Roots of Polynomial Equations (continued)

You can use the Rational Root Theorem to find rational roots.
Rational Root Theorem
If a polynomial has integer coefficients, then every rational root can be written in the form $\frac{p}{q}$, where p is a factor of the constant term and q is a factor of the leading coefficient.

Use the Rational Root Theorem. Solve the equation: $x^{3}+3 x^{2}-6 x-8=0$.
The constant term is -8 . The leading coefficient is 1 .
p : factors of -8 are $\pm 1, \pm 2, \pm 4, \pm 8$
q : factors of 1 are ± 1
Possible roots, $\frac{p}{q}: \pm 1, \pm 2, \pm 4, \pm 8$
Test some possible roots to find an actual root. Use a synthetic substitution table. The first column lists possible roots. The last column represents the remainders. A root has a remainder of 0 .
2 is a root, so $x-2$ is a factor.
Use the coefficients from the table to write the other factor.

\boldsymbol{p}	Coefficients of the Equation			
	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{- 6}$	$-\mathbf{8}$
1	1	4	-2	-10
2	1	5	4	0
4	1	7	22	80

$$
\begin{aligned}
& (x-2)\left(x^{2}+5 x+4\right)=0 \\
& (x-2)(x+4)(x+1)=0 \\
& x=2 \text { or } x=-4 \text { or } x=-1
\end{aligned}
$$

Factor the quadratic to find the other factors.

The roots of the equation are $-4,-1$, and 2 .
Use the Rational Root Theorem. Solve $x^{3}-7 x^{2}+7 x+15=0$.
5. a. Identify possible roots. \qquad
b. Use the synthetic substitution table to identify an actual root.

$\frac{p}{q}$	Coefficients of the Equation			
	1	-7	7	15

c. Write the factors of the equation.

[^0]b. $\pm 1, \pm 2, \pm 4, \pm 8$
c. $2, \frac{-3 \pm i \sqrt{7}}{2}$; no, 2 of the roots are irrational numbers.
d. 2 m wide, 4 m long, and 1 m deep

Practice C

1. $-5,0,7$
2. $0,3,4$
3. $x=2$ with multiplicity 3
4. $x=-4$ with multiplicity $2 ; x=-2$ with multiplicity 1
5. $-8,0,6$
6. $3,6,2 \pm \sqrt{3}$
7. $-3,0,1$
8. $-3,1,-3 \pm \sqrt{11}$
9. a. $2 x^{3}-4 x^{2}-64=0$
b. $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64$
c. $4,-1 \pm i \sqrt{7}$; no, 2 of the roots are irrational numbers.
d. 4 in. wide, 8 in. long, and 2 in. deep

Reteach

1. $3 x^{4}(x-5)(x+2) ;-2,0,5$
2. $x^{2}\left(x^{2}-5 x+6\right) ; x^{2}(x-2)(x-3) ; 0,2,3$
3. $2 x\left(x^{2}-3 x-18\right) ; 2 x(x-6)(x+3) ;-3,0,6$
4. $2 x^{4}\left(x^{2}-16\right) ; 2 x^{4}(x+4)(x-4) ;-4,0,4$
5. a. $\pm 1, \pm 3, \pm 5, \pm 15$
b. 3 or 5

$\frac{p}{q}$	Coefficients of the Equation			
	1	-7	7	15
1	1	6	13	28
3	1	-4	-5	0
5	1	-2	-3	0

c. $(x-3)\left(x^{2}-4 x-5\right)=0 ;(x-3)(x-5)$ $(x+1)=0$
d. $x=3$ or $x=5$ or $x=-1$

Challenge

1. $y=(x+3)(x)(x-4)$
2. $y=-(x+1)^{2}(x-1)(x-3)$
3. $y=(x+5)(x+2)^{2}\left(x-\frac{1}{2}\right)(x-3)$
4. $y=(x+6)^{2}(x)(x-1)(x-3)^{2}(x-4)^{2}$
5. $y=(x+3 i)(x-3 i)(x-1)^{2}(x-(1+\sqrt{3}))$
$(x+(1+\sqrt{3}))$

Problem Solving

1. $V=w(w+10)(w-14)$
2. $w^{3}-4 w^{2}-140 w-76,725=0$
3. No; yes; no

The constant term is 76,725 , which is not a multiple or 4 or 10 , but is a multiple of 5.
4. Students should test possible roots that are multiples of 5 but not multiples of 10, such as 35,45 , and 55 .
5. C
6. A

Reading Strategies

1. Substitute the value of the root in the function and see if it equals 0 .
2. $(x-3)$ and $(x+2)$
3. a. $(x+4)$
b. 3 times
4. $4 x,(x-3),(x+3) ;-3,0,3$
5. $-x,(x-5),(x-1) ; 0,1,5$
6. $(x+2),(x+2),(x-2) ;-2,2$

LESSON 6-6

Practice A

1. 3
2. 5
3. 4
4. a. $P(x)=x(x+1)(x-2)$
b. $P(x)=\left(x^{2}+x\right)(x-2)$
c. $P(x)=x^{3}-2 x^{2}+x^{2}-2 x$
d. $P(x)=x^{3}-x^{2}-2 x$
5. $P(x)=x^{3}-3 x^{2}-13 x+15$
6. $P(x)=x^{3}+4 x^{2}-x-4$
7. a. 2
b. $2 i,-2 i$

[^0]: d. Identify the roots of the equation.

