Name

Solve each polynomial equation.

1. $3x^{6} - 9x^{5} = 30x^{4}$ $3x^{6} - 9x^{5} - 30x^{4} = 0$ $3x^{4}(x^{2} - 3x - 10) = 0$	2. $x^4 + 6x^2 = 5x^3$ $x^4 - 5x^3 + 6x^2 = 0$
3. $2x^3 - 6x^2 - 36x = 0$	4. $2x^6 - 32x^4 = 0$

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

Coefficients of the Equation

-6

-2

4

22

-8

-10

0

80

3

4

5

7

LESSON 6-5

Finding Real Roots of Polynomial Equations (continued)

You can use the Rational Root Theorem to find rational roots.

term and q is a factor of the leading coefficient.

Use the Rational Root Theorem. Solve the equation: $x^3 + 3x^2 - 6x - 8 = 0$.

The constant term is -8. The leading coefficient is 1.

p: factors of -8 are ± 1 , ± 2 , ± 4 , ± 8

q: factors of 1 are ± 1

Reteach

Possible roots, $\frac{p}{q}$: ±1, ±2, ±4, ±8

Test some possible roots to find an actual root. Use a synthetic substitution table. The first column lists possible roots. The last column represents the remainders. A root has a remainder of 0.

2 is a root, so x - 2 is a factor.

Use the coefficients from the table to write the other factor.

 $(x-2) (x^2 + 5x + 4) = 0$ (x-2) (x+4) (x+1) = 0x = 2 or x = -4 or x = -1

Factor the guadratic to find the other factors.

1

1

1

1

р

q

1

2

4

The roots of the equation are -4, -1, and 2.

Use the Rational Root Theorem. Solve $x^3 - 7x^2 + 7x + 15 = 0$.

- 5. a. Identify possible roots.
 - b. Use the synthetic substitution table to identify an actual root.

<u>p</u>	Coefficients of the Equation				
q	1	-7	7	15	

c. Write the factors of the equation.

d. Identify the roots of the equation.

b. ±1, ±2, ±4, ±8

c. 2,
$$\frac{-3 \pm i\sqrt{7}}{2}$$
; no, 2 of the roots are irrational numbers.

d. 2 m wide, 4 m long, and 1 m deep

Practice C

- 1. -5, 0, 7 2. 0, 3, 4
- 3. x = 2 with multiplicity 3
- 4. x = -4 with multiplicity 2; x = -2 with multiplicity 1
- 5. -8, 0, 6 6. 3, 6, $2 \pm \sqrt{3}$
- 7. -3, 0, 1 8. -3, 1, -3 $\pm \sqrt{11}$
- 9. a. $2x^3 4x^2 64 = 0$ b. ± 1 , ± 2 , ± 4 , ± 8 , ± 16 , ± 32 , ± 64
 - c. 4, $-1 \pm i\sqrt{7}$; no, 2 of the roots are irrational numbers.
 - d. 4 in. wide, 8 in. long, and 2 in. deep

Reteach

- 1. $3x^4(x-5)(x+2)$; -2, 0, 5 2. $x^2(x^2-5x+6)$; $x^2(x-2)(x-3)$; 0, 2, 3
- 2. x (x 5x + 6), x (x 2)(x 3), 0, 2, 3
- 3. $2x(x^2 3x 18)$; 2x(x 6)(x + 3); -3, 0, 6
- 4. $2x^4(x^2 16)$; $2x^4(x + 4)(x 4)$; -4, 0, 4
- 5. a. ±1, ±3, ±5, ±15

b. 3 or 5

Coefficients of the Equation				
1	-7	7	15	
1	6	13	28	
1	-4	-5	0	
1	-2	-3	0	
	1 1 1 1	1 -7 1 6 1 -4 1 -2	1 -7 7 1 6 13 1 -4 -5 1 -2 -3	

- c. $(x-3)(x^2-4x-5) = 0; (x-3)(x-5)$ (x+1) = 0
- d. x = 3 or x = 5 or x = -1

Challenge

1. y = (x + 3)(x)(x - 4)2. $y = -(x + 1)^2(x - 1)(x - 3)$

3.
$$y = (x+5)(x+2)^2 \left(x-\frac{1}{2}\right)(x-3)$$

4. $y = (x+6)^2(x)(x-1)(x-3)^2(x-4)^2$
5. $y = (x+3i)(x-3i)(x-1)^2 \left(x-(1+\sqrt{3})\right)$
 $\left(x+(1+\sqrt{3})\right)$

Problem Solving

- 1. V = w(w + 10)(w 14)
- 2. $w^3 4w^2 140w 76,725 = 0$
- 3. No; yes; no

The constant term is 76,725, which is not a multiple or 4 or 10, but is a multiple of 5.

- 4. Students should test possible roots that are multiples of 5 but not multiples of 10, such as 35, 45, and 55.
- 5. C 6. A

Reading Strategies

- 1. Substitute the value of the root in the function and see if it equals 0.
- 2. (x 3) and (x + 2)
- 3. a. (x + 4)
- b. 3 times
- 4. 4*x*, (*x* 3), (*x* + 3); -3, 0, 3
- 5. -x, (x 5), (x 1); 0, 1, 5
- 6. (x+2), (x+2), (x-2); -2, 2

LESSON 6-6

Practice A

1. 3 2. 5 3. 4 4. a. P(x) = x(x + 1)(x - 2)b. $P(x) = (x^2 + x)(x - 2)$ c. $P(x) = x^3 - 2x^2 + x^2 - 2x$ d. $P(x) = x^3 - x^2 - 2x$ 5. $P(x) = x^3 - 3x^2 - 13x + 15$ 6. $P(x) = x^3 + 4x^2 - x - 4$ 7. a. 2

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.