

| 5-3 Medians and Altitudes of Triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-3 Medians and Altitudes of Triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fill in the blanks to complete each definition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Use the figure for Exercises 1–4. $GB = 12\frac{2}{3}$ and $CD = 10$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1. A median of a triangle is a segment whose endpoints are a vertex of the triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Find each length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and the <u>midpoint</u> of the opposite side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. FG <u>3</u> 2. BF <u>19</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ol> <li>An altitude of a triangle is a <u>perpendicular</u> segment from a vertex to<br/>the line containing the opposite side.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. $GD = \frac{3\frac{1}{3}}{3}$ 4. $CG = \frac{6\frac{2}{3}}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ol> <li>The centroid of a triangle is the point where the three</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5. A triangular compass needle will turn most<br>easily if it is attached to the compass face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ol> <li>The orthocenter of a triangle is the point where the three <u>altitudes</u><br/>are concurrent.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | through its centroid. Find the coordinates $\begin{pmatrix} w \\ (0, 0) \\ (z, 0) \end{pmatrix}$ $\begin{pmatrix} 1 \\ (z, 0) \\ (z, 0) \end{pmatrix}$ $(1, 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Use the Centroid Theorem and the figure for Exercises 5–8.<br>$\overline{OU}$ , $\overline{RS}$ , and $\overline{PT}$ are medians of $\triangle PQR$ . $RS = 21$ and $VT = 5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Find the orthocenter of the triangle with the given vertices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5. $RV$ 14 6. $SV$ 7 $V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>6.</b> $X(-5, 4), Y(2, -3), Z(1, 4)$<br><b>7.</b> $A(0, -1), B(2, -3), C(4, -1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7. TP 15 8. VP 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(\underline{2}, \underline{5})$ $(\underline{2}, \underline{-3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Use the figure for Exercises 8 and 9. $\overline{HL}$ , $\overline{IM}$ , and $\overline{JK}$ are medians of $\triangle HIJ$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The <i>centroid</i> is also called the center of gravity because it is the<br>balance point of the triangle. By holding a tray at the center of<br>gravity, a waiter can carry with one hand a large triangular tray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8. Find the area of the triangle. $36 \text{ m}^2$<br>9. If the perimeter of the triangle is 49 meters, then find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9. If the vertices of the trav have coordinates A(0, 0), B(9, 0), and C(0, 6), find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | length of <i>MH</i> . ( <i>Hint:</i> What kind of a triangle is it?) 2.5 m M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| coordinates of the balance point (centroid) of the tray. ( <i>Hint:</i> The <i>x</i> -coordinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 Two medians of a triangle were cut apart at the controid to make the four                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| of the centroid is the average of the x-coordinates of the three vertices, and<br>the y-coordinate of the centroid is the average of the y-coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | segments shown below. Use what you know about the Centroid to make the four                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of the three vertices.) ( <u>3</u> , <u>2</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to reconstruct the original triangle from the four segments shown. Measure the side lengths of your triangle to check that you constructed medians.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10. If the waiter's hand is at the balance point and the distance from his hand to A is 16 inches, find the distance from his hand to BC. 8 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( <i>Note:</i> There are many possible answers.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Complete Exercises 11–15 to find the coordinates of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x = \frac{1}{2y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| orthocenter of $\triangle DEF$ with vertices $D(0, 0)$ , $E(3, 6)$ , and $F(4, 0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ↓ <u>v</u> <u>v</u> <u>v</u> <u>v</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>11.</b> Plot <i>D</i> , <i>E</i> , and <i>F</i> and draw $\triangle DEF$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Possible answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ol> <li>Find the equation of a line perpendicular to DF through E.<br/>(Hint: A vertical line always takes the form x =)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| x = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13. Find the slope of ED1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14. Find the slope of a line perpendicular to $\overline{ED}$ . 2 $v = -\frac{1}{r} + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>15.</b> Find the equation of a line perpendicular to $\overline{ED}$ through F. $y = \frac{1}{2}x + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Copyright © by Holt, Rivehaut and Winston. 19 Holt Geometry,<br>All rights reasons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Copyright & by Hell, Rinehart and Winston. 20 Holt Geometry<br>All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LESSON         Practice C           533         Medians and Altitudes of Triangles           1         In a cickt transfe, what kind of line connects the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TESSON Reteach<br>Medians and Altitudes of Triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Itesson         Practice C <b>553</b> Medians and Altitudes of Triangles           1. In a right triangle, what kind of line connects the orthocenter and the circumcenter?         a median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TESSON       Reteach         533       Medians and Altitudes of Triangles         AH, BJ, and CG are medians       Artificity Triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Itesson         Practice C           Image: State of the second stat                                                                       | LESSON       Reteach         533       Medians and Altitudes of Triangles         of a triangle. They each join a vertex and the midpoint of a vertex and the midpoint of       a vertex and the midpoint of       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Itesson         Practice C           553         Medians and Altitudes of Triangles           1. In a right triangle, what kind of line connects the orthocenter and the circumcenter?         a median           After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the x-coordinate of the centroid is the triangles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Itesson       Reteach <b>53</b> Medians and Altitudes of Triangles         AH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.       The point of intersection of<br>the medians is called the<br>centroid of ABC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Itesson       Practice C         Image: State of the second                                                                                | <b>Reteach</b><br><b>Given Set Example 1</b><br><b>Reteach</b><br><b>Given Set Example 1</b><br><b>Reteach</b><br><b>Medians and Altitudes of Triangles</b><br><b>Ati, BJ, and CG are medians</b><br><b>of a triangle.</b> They each join<br>a vertex and the midpoint of<br>the opposite side.<br><b>Ati, BJ, and CG are medians</b><br><b>of a triangle.</b> They each join<br><b>a vertex and the midpoint of</b><br><b>the medians is called the</b><br><b>centroid</b> of $\triangle ABC$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Itessent       Practice C         Image: State of the second                                                                               | <b>Reteach</b><br><b>Generalized Medians and Altitudes of Triangles</b><br><i>AH, BJ,</i> and <i>CG</i> are <b>medians</b><br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.<br><i>AH, BJ,</i> and <i>CG</i> are <b>medians</b><br><i>AH, BJ,</i> and <i>CG</i> are <b>medians</b><br><i>a</i> vertex and the midpoint of<br>the medians is called the<br>centroid of $\triangle ABC$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Itesson       Practice C         Image: State of the second state of the second state of the centroid state of the centroid is the average of the x-coordinate of the centroid is the average of the x-coordinate of the x-                                                                                | Reteach         Image: State of the system       Medians and Altitudes of Triangles $AH, BJ, and CG are medians of a triangle. They each join a vertex and the midpoint of the opposite side.       The point of intersection of the medians is called the centroid of \triangle ABC.         Image: Theorem       Example         B       B   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Itesson Practice C</b><br><b>Identify and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the <i>x</i> -coordinate of the centroid is the average of the <i>x</i> -coordinates of the vertices and the <i>y</i> -coordinate of the centroid is the average of the <i>y</i> -coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0), B(2b, 2c), C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a + 2b}{2}, \frac{2c}{2}\right)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reteach         Image: State of the system       Medians and Altitudes of Triangles         Image: AH, BJ, and CG are medians of a triangle. They each join a vertex and the midpoint of the opposite side.       The point of intersection of the medians is called the centroid of $\triangle ABC$ .         Image: Theorem       Example         Image: Centroid Theorem       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>IESSON Practice C</b><br><b>The dians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the <i>x</i> -coordinate of the centroid is the average of the <i>x</i> -coordinates of the vertices and the <i>y</i> -coordinate of the centroid is the average of the <i>y</i> -coordinate of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0), B(2b, 2c), C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a + 2b}{3}, \frac{2c}{3}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point <i>D</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Theorem         Theorem         Centroid Theorem         The centroid of a triangle is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Practice C</b><br><b>Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the<br>orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to<br>her class that in any triangle, the x-coordinate of the centroid is the<br>average of the x-coordinates of the vertices and the y-coordinate<br>of the centroid is the average of the y-coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use<br>deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a + 2b}{3}, \frac{2c}{3}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LESSON       Reteach         Sector Reteach         Joint of CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.       The point of intersection of<br>the medians is called the<br>centroid of $\triangle ABC$ .         Theorem         Example         Centroid Theorem         The centroid of a triangle is<br>located $\frac{2}{9}$ of the distance from<br>restrict way to the midenite of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Practice C</b><br><b>Here is a median</b><br><b>After noticing a pattern with several triangles, Regina declares to</b><br>her class that in any triangle, the x-coordinate of the centroid is the<br>average of the x-coordinates of the vertices and the y-coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use<br>deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0), B(2b, 2c), C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a + 2b}{3}, \frac{2c}{3}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point E.<br>The standard of the centroid $\overline{AB}$ is $(b, c)$ . Name this point E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | These the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Practice C</b><br><b>Big Definition</b><br><b>Practice C</b><br><b>I</b> In a right triangle, what kind of line connects the orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the x-coordinate of the centroid is the average of the x-coordinates of the y-coordinate of the centroid is the average of the x-coordinates of the y-coordinate of the centroid is the average of the x-coordinates of the y-coordinate of the centroid is the average of the x-coordinates of the y-coordinate of the centroid is the average of the y-coordinates of the vertices. Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0), B(2b, 2c), C(2a, 0)$<br>Prove: The coordinates of the centroid are $(\frac{2a+2b}{3}, \frac{2c}{3})$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point E.<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the average $a = \frac{2c}{2b-a}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TESSON       Reteach         Medians and Altitudes of Triangles         Image: They each join a vertex and the midpoint of the opposite side.         Image: The point of intersection of the medians is called the centroid of $\triangle ABC$ .         Theorem         The centroid of a triangle is located $\frac{2}{3}$ of the distance from each vertex to the midpoint of the opposite side.         Given: $\overline{AH}$ , $\overline{CG}$ , and $\overline{BJ}$ are medians of $\triangle ABC$ .         Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Practice C</b><br><b>Basel Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the <i>x</i> -coordinate of the centroid is the average of the <i>x</i> -coordinates of the vertices and the <i>y</i> -coordinate of the centroid is the average of the <i>y</i> -coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Hegina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a+2b}{2}, \frac{2c}{3}, \frac{2}{3}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point E.<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Reteach</b><br><b>Given:</b> $\overline{AH}$ , $\overline{BJ}$ , and $\overline{CG}$ are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.<br>Theorem<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br><b>Example</b><br><b>Given:</b> $\overline{AH}$ , $\overline{CG}$ , and $\overline{BJ}$ are medians of $\triangle ABC$ .<br><b>Conclusion:</b> $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$<br>In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Practice C</b><br><b>Basel Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the <i>x</i> -coordinate of the centroid is the average of the <i>y</i> -coordinate of the ventices and the <i>y</i> -coordinate of the centroid is the average of the <i>y</i> -coordinate of the ventices.<br>Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Hegina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a+2b}{2b}, \frac{2c}{2}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point D.<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Reteach</b><br><b>Medians and Altitudes of Triangles</b><br>AH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.<br>Theorem<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br>Theorem<br>Centroid Theorem<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br>Theorem<br>A<br>Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$<br>In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find AN and BJ.<br>$AN = \frac{2}{3}AH$ Centroid Thm.<br>$BN = \frac{2}{3}BJ$ Centroid Thm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Practice C</b><br><b>Basel Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the <i>x</i> -coordinate of the centroid is the average of the <i>y</i> -coordinate of the ventroes and the <i>y</i> -coordinate of the centroid is the average of the <i>y</i> -coordinate of the ventroes.<br>Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a+2b}{2b}, \frac{2c}{2}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point E.<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The control will be the interception point of $\overline{AB}$ and $\overline{CE}$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Reteach</b><br><b>Solution</b><br><b>Reteach</b><br><b>Solution</b><br><b>Reteach</b><br><b>Solution</b><br><b>A</b> <i>H</i> , <i>BJ</i> , and <i>CG</i> are <b>medians</b><br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.<br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Example</b><br><b>Centroid Theorem</b><br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br><b>Given:</b> $\overline{AH}$ , $\overline{CG}$ , and $\overline{BJ}$ are medians of $\triangle ABC$ .<br><b>Conclusion:</b> $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$<br>In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find <i>AN</i> and <i>BJ</i> .<br>$AN = \frac{2}{3}AH$ Centroid Thm.<br>$AN = \frac{2}{3}(18)$ Substitute 18 for <i>AH</i> .<br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b><br><b>Theorem</b>                                                                                                                                                                                                                       |
| <b>Practice C</b><br><b>Box Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the<br>orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to<br>her class that in any triangle, the <i>x</i> -coordinate of the centroid is the<br>average of the <i>x</i> -coordinates of the vertices and the <i>y</i> -coordinate<br>of the centroid is the average of the <i>y</i> -coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use<br>deductive reasoning to prove that Hegina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a+2b}{2b}, \frac{2c}{2}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point D.<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the<br>equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The centroid will be the intersection point of $\overline{BD}$ and $\overline{CE}$ , so<br>set the equations equal and simplify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Reteach</b><br><b>Solution</b><br><b>Reteach</b><br><b>Solution</b><br><b>Reteach</b><br><b>Solution</b><br><b>Reteach</b><br><b>Solution</b><br><b>Reteach</b><br><b>Solution</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Reteach</b><br><b>Rete</b> |
| <b>Practice C</b><br><b>Herefore</b><br><b>Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the<br>orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to<br>her class that in any triangle, the <i>x</i> -coordinate of the centroid is the<br>average of the <i>x</i> -coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use<br>deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a + 2b}{3}, \frac{2c}{3}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point E.<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the<br>equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The centroid will be the intersection point of $\overline{BD}$ and $\overline{CE}$ , so<br>set the equations equal and simplify:<br>$\frac{2c}{2b-a}(x-a) = \frac{-c}{2a-b}(x-2a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tesson       Reteach         Medians and Altitudes of Triangles         Medians and Altitudes of Triangles         The point of a triangle. They each join a vertex and the midpoint of the opposite side.         The point of intersection of the medians is called the centroid of $\triangle ABC$ .         Centroid Theorem         The centroid of a triangle is located $\frac{2}{3}$ of the distance from each vertex to the midpoint of the opposite side.         Civen: $\overline{AH}$ , $\overline{CG}$ , and $\overline{BJ}$ are medians of $\triangle ABC$ .         Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$ In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem to find $AN$ and $BJ$ . $AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ . $10 = \frac{2}{3}BJ$ Centroid Thm. $AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ . $10 = \frac{2}{3}BJ$ Substitute 10 for $BN$ . $AN = 12$ Simplify. $15 = BJ$ Simplify.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Practice C</b><br><b>Herefore</b><br><b>Practice C</b><br><b>Herefore</b><br><b>Atter noticing a pattern with several triangles, Regina declares to her class that in any triangle, the <i>x</i>-coordinate of the centroid is the average of the <i>x</i>-coordinates of the vertices and the <i>y</i>-coordinate of the centroid is the average of the <i>y</i>-coordinate of the vertices. Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Regina's conclusion is correct.<br/><b>2.</b> Given: <math>\triangle ABC</math> with <math>A(0, 0)</math>, <math>B(2b, 2c)</math>, <math>C(2a, 0)</math><br/><b>Prove:</b> The coordinates of the centroid are <math>\left(\frac{2a+2b}{3}, \frac{2c}{3}\right)</math>.<br/>The midpoint of <math>\overline{AC}</math> is <math>(a, 0)</math>. Name this point <math>D</math>.<br/>The slope of <math>\overline{BD}</math> is <math>\frac{2c}{2b-a}</math>. Using <math>(a, 0)</math> as a point on <math>\overline{BD}</math> gives the equation <math>y = \frac{2c}{2b-a}(x-a)</math>. The slope of <math>\overline{CE}</math> is <math>\frac{-c}{2a-b}</math>.<br/>Using <math>(2a, 0)</math> as a point on <math>\overline{CE}</math> gives the equation <math>y = \frac{-c}{2a-b}(x-2a)</math>.<br/>The centroid will be the intersection point of <math>\overline{BD}</math> and <math>\overline{CE}</math>, so set the equations equal and simplify:<br/><math>\frac{2c}{2b-a}(x-a) = \frac{-c}{2a-b}(x-2a)</math>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Reteach</b><br><b>Medians and Altitudes of Triangles</b><br>AH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.<br>Theorem Theorem<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br>Theorem Example<br>Centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br>The centroid Theorem<br>The centroid Theorem The centroid Theorem to<br>find AN and BJ.<br>$AN = \frac{2}{3}AH$ Centroid Thm.<br>$AN = \frac{2}{3}BJ$ Centroid Thm.<br>$AN = \frac{2}{3}BJ$ Centroid Thm.<br>$AN = \frac{2}{3}BJ$ Substitute 18 for AH.<br>$10 = \frac{2}{3}BJ$ Substitute 10 for BN.<br>AN = 12 Simplify.<br>15 = BJ Simplify.<br>AN = 12 Simplify.<br>AN = 2 WX<br>AN = 2 WX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Practice C</b><br><b>Herefore</b><br><b>Practice C</b><br><b>Herefore</b><br><b>Atter noticing a pattern with several triangles, Regina declares to</b><br>her class that in any triangle, the <i>x</i> -coordinate of the centroid is the<br>average of the <i>x</i> -coordinates of the vertices and the <i>y</i> -coordinate<br>of the centroid is the average of the <i>y</i> -coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use<br>deductive reasoning to prove that Regina's conclusion is correct.<br><b>2.</b> Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a+2b}{2b}, \frac{2}{2c}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point <i>D</i> .<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the<br>equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The centroid will be the intersection point of $\overline{BD}$ and $\overline{CE}$ , so<br>set the equations equal and simplify:<br>$\frac{2c}{2b-a}(x-a) = \frac{-c}{2a-b}(x-2a)$<br>(4ac-2bc)(x-a) = (ac-2bc)(x-2a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reteach <b>Reteach Medians and Altitudes of Triangles</b> AH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.       The point of intersection of<br>the medians is called the<br>centroid of $\triangle ABC$ . <b>Theorem</b> The centroid Theorem         The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side. <b>Example</b> In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ . <b>B</b> N = $\frac{2}{3}BJ$ Centroid Theorem $A = \frac{2}{3}AH$ Centroid Thm. $BN = \frac{2}{3}BJ$ Centroid Theorem $A = \frac{2}{3}AH$ Centroid Thm. $BN = \frac{2}{3}BJ$ Centroid Theorem $A = \frac{2}{3}AH$ Centroid Thm. $BN = \frac{2}{3}BJ$ Centroid Theorem $AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ . $10 = \frac{2}{3}BJ$ Substitute 10 for $BN$ . $AN = 12$ Simplify. $15 = BJ$ Simplify.       In $\triangle QRS, RX = 48$ and $QW = 30$ . Find each length. $\frac{4}{4}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Practice C</b><br><b>Present</b><br><b>Practice C</b><br><b>Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the<br>orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to<br>her class that in any triangle, the <i>x</i> -coordinate of the centroid is the<br>average of the <i>x</i> -coordinates of the vertices and the <i>y</i> -coordinate<br>of the centroid is the average of the <i>y</i> -coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br><b>Prove:</b> The coordinates of the centroid are $\left(\frac{2a+2b}{2b}, \frac{2c}{2}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point <i>D</i> .<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the<br>equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The centroid will be the intersection point of $\overline{BD}$ and $\overline{CE}$ , so<br>set the equations equal and simplify:<br>$\frac{2c}{2b-a}(x-a) = \frac{-c}{2a-b}(x-2a)$<br>(4ac - 2bc)(x-a) = (ac - 2bc)(x-2a)<br>$4acx - 2bcx - 4a^2c + 2abc = acx - 2bcx - 2a^2c + 4abc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Reteach</b><br><b>Medians and Altitudes of Triangles</b><br>AH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br><b>Theorem</b><br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br><b>Centroid Theorem</b><br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.<br><b>Given:</b> $\overline{AH}, \overline{CG}, \text{ and } \overline{BJ} \text{ are medians of } \triangle ABC.$<br><b>Conclusion:</b> $AN = \frac{2}{3}AH, CN = \frac{2}{3}CG, BN = \frac{2}{3}BJ$<br>In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ .<br>$AN = \frac{2}{3}AH$ Centroid Thm.<br>$AN = \frac{2}{3}AH$ Centroid Thm.<br>$AN = \frac{2}{3}BJ$ Centroid Thm.<br>$AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ .<br>$10 = \frac{2}{3}BJ$ Substitute 10 for $BN$ .<br>AN = 12 Simplify.<br><b>In</b> $\triangle QRS, BX = 48$ and $QW = 30$ . Find each length.<br>1. $RW$<br>2. WX<br>$\frac{32}{3}$<br>3. OZ<br>4. WZ<br>4. WZ<br>4. WZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Practice C</b><br><b>Herefore</b><br><b>Practice C</b><br><b>Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the<br>orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to<br>her class that in any triangle, the <i>x</i> -coordinate of the centroid is the<br>average of the <i>x</i> -coordinates of the vertices and the <i>y</i> -coordinate<br>of the centroid is the average of the <i>y</i> -coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a+2b}{2b}, \frac{2c}{2}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point <i>D</i> .<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point <i>E</i> .<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the<br>equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The centroid will be the intersection point of $\overline{BD}$ and $\overline{CE}$ , so<br>set the equations equal and simplify:<br>$\frac{2c}{2b-a}(x-a) = \frac{-c}{2a-b}(x-2a)$<br>(4ac - 2bc)(x-a) = (ac - 2bc)(x-2a)<br>$4acx - 2bcx - 4a^2c + 2abc = acx - 2bcx - 2a^2c + 4abc$<br>$3acx = 2a^2c + 2abc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reteach         Medians and Altitudes of Triangles         AH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.         The point of intersection of<br>the opposite side.         The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.         Given: $\overline{AH}$ , $\overline{CG}$ , and $\overline{BJ}$ are medians of $\triangle ABC$ .<br>Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$ In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ . $AN = \frac{2}{3}AH$ Centroid Thm.<br>$AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ .<br>$10 = \frac{2}{3}BJ$ Centroid Thm.<br>$AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ .<br>$10 = \frac{2}{3}BJ$ Substitute 10 for $BN$ .<br>AN = 12 Simplify.<br>$15 = BJ$ Simplify.         In $\triangle QRS, BX = 48$ and $QW = 30$ . Find each length.<br>$1. RW$ 2. $WX$ $\frac{32}{45}$ $\frac{16}{2}$ $\frac{32}{45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Practice C</b><br><b>Basel Medians and Altitudes of Triangles</b><br>1. In a right triangle, what kind of line connects the orthocenter and the circumcenter? <u>a median</u><br>After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the x-coordinate of the centroid is the average of the y-coordinates of the vertices and the y-coordinate of the centroid is the average of the y-coordinates of the vertices.<br>Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br><b>Prove:</b> The coordinates of the centroid are $\left(\frac{2a+2b}{2b}, \frac{2c}{3}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point $D$ .<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The centroid will be the intersection point of $\overline{BD}$ and $\overline{CE}$ , so set the equations equal and simplify:<br>$\frac{2c}{2b-a}(x-a) = \frac{-c}{2a-b}(x-2a)$<br>(4ac - 2bc)(x-a) = (ac - 2bc)(x - 2a)<br>$4acx - 2bcx - 4a^2c + 2abc = acx - 2bcx - 2a^2c + 4abc$<br>$3acx = 2a^2c + 2abc$<br>$x = \frac{2a+2b}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reteach         Medians and Altitudes of Triangles         AH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.         The point of intersection of<br>the medians is called the<br>centroid of $\triangle ABC$ .         Theorem         Theorem         The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.         Diverse TAH, CG, and BJ are medians of $\triangle ABC$ .<br>Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$ In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ . $AN = \frac{2}{3}AH$ Centroid Thm. $BN = \frac{2}{3}BJ$ Centroid Thm.<br>$AN = \frac{2}{3}(18)$ $BN = 48$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ . $AN = \frac{2}{3}BJ$ Centroid Thm.<br>$AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ . $10 = \frac{2}{3}BJ$ Substitute 10 for $BN$ .<br>AN = 12       Simplify.         16 $3$ .<br>$OZ$ $4$ . $WZ$ $45$ $15$ In $\triangle HJK$ , $HD = 21$ and $BK = 18$ . Find each length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Practice C</b><br><b>Big Determine the second set of the set of set of the set of the set of set of th</b> | ReteachThe seach join<br>a vertex and the midpoint of<br>the opposite side.The point of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.Centroid Theorem<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.Centroid Theorem<br>Given: $\overline{AH}$ , $\overline{CG}$ , and $\overline{BJ}$ are medians of $\triangle ABC$ .<br>Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$ In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ . $AN = \frac{2}{3}AH$ Centroid Thm. $BN = \frac{2}{3}BJ$ Centroid Thm. $AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ . $10 = \frac{2}{3}BJ$ Substitute 10 for $BN$ . $AN = 12$ Simplify. $15 = BJ$ Simplify.In $\triangle ABS$ , $RX = 48$ and $QW = 30$ . Find each length.<br>1. $RW$ $2.WX$ $\frac{32}{45}$ $15$ In $\triangle HJK$ , $HD = 21$ and $BK = 18$ . Find each length.<br>5. $HB$ $6.BD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Practice C</b><br><b>Theorem 1</b> After noticing a pattern with several triangles, Regina declares to the critication of the control   | ReteachThesamMedians and Altitudes of TrianglesAH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.The point of intersection of<br>the medians is called the<br>centroid of $\triangle ABC$ .TheoremExampleOptimized and the midpoint of<br>the opposite side.Centroid TheoremThe centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.Given: $\overline{AH}$ , $\overline{CG}$ , and $\overline{BJ}$ are medians of $\triangle ABC$ .<br>Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$ In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ . $AN = \frac{2}{3}AH$ Centroid Thm. $BN = \frac{2}{3}BJ$ Centroid Thm. $AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ . $10 = \frac{2}{3}BJ$ Substitute 10 for $BN$ . $AN = 12$ Simplify. $15 = BJ$ Simplify.In $\triangle ABS$ , $RX = 48$ and $QW = 30$ . Find each length.<br>1. $RW$ $2.WX$ $\frac{45}{45}$ $15$ In $\triangle HJK$ , $HD = 21$ and $BK = 18$ . Find each length.<br>5. $HB$ $6.BD$ $14$ $7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Practice C</b><br><b>Herefore</b><br><b>Atter</b> noticing a pattern with several triangles, Regina declares to<br>her class that in any triangle, the x-coordinate of the centroid is the<br>arrend and the viccumcenter?<br>After noticing a pattern with several triangles, Regina declares to<br>her class that in any triangle, the x-coordinate of the ventices.<br>Regina used inductive reasoning to come to her conclusion. Use<br>deductive reasoning to prove that Regina's conclusion is correct.<br><b>2.</b> Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $(\frac{2a+2b}{3}, \frac{2c}{3})$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point D.<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the<br>equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The centroid will be the intersection point of $\overline{BD}$ and $\overline{CE}$ , so<br>set the equations equal and simplify:<br>$\frac{2c}{2b-a}(x-a) = \frac{-c}{2a-b}(x-2a)$<br>(4ac-2bc)(x-a) = (ac-2bc)(x-2a)<br>$4acx - 2bcx - 4a^2c + 2abc = acx - 2bcx - 2a^2c + 4abc$<br>$3acx = 2a^2c + 2abc$<br>$x = \frac{2a+2b}{3}$<br>Substituting x into the equation of $\overline{BD}$ yields: $y = \frac{2c}{2b-a}(\frac{2a+2b}{a}, a)$<br>$= \frac{2c}{2b-a}(\frac{2b-a}{a})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ReteachThesamMedians and Altitudes of TrianglesAH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.The point of intersection of<br>the medians is called the<br>centroid of $\triangle ABC$ .TheoremThe centroid TheoremThe centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.Orecleventex to the midpoint of<br>the opposite side.Centroid TheoremTheoremExampleOrecleventex to the midpoint of<br>the opposite side.Given: $\overline{AH}$ , $\overline{CG}$ , and $\overline{BJ}$ are medians of $\triangle ABC$ .<br>Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$ In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ . $AN = \frac{2}{3}(18)$<br>Substitute 18 for $AH$ . $BN = \frac{2}{3}BJ$<br>Substitute 10 for $BN$ .<br>$AN = 12$<br>Simplify.In $\triangle ABS$ , $RX = 48$ and $QW = 30$ . Find each length. $1. RW$ $2. WX$ $AWZ$ $\underline{A5}$ $15$ In $\triangle ABK$ , $HD = 21$ and $BK = 18$ . Find each length. $5. HB$ $6. BD$ $\underline{14}$ $7$ $7. CK$ $8. CB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Practice C</b><br><b>The determined of the second second</b> | ReteachMedians and Altitudes of TrianglesAH, BJ, and CG are medians<br>of a triangle. They each join<br>a vertex and the midpoint of<br>the opposite side.The point of intersection of<br>the medians is called the<br>centroid of $\triangle ABC$ .Centroid Theorem<br>The centroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.ExampleCentroid of a triangle is<br>located $\frac{2}{3}$ of the distance from<br>each vertex to the midpoint of<br>the opposite side.Given: $\overline{AH}, \overline{CG}, \text{ and } \overline{BJ}$ are medians of $\triangle ABC$ .<br>Conclusion: $AN = \frac{2}{3}AH$ , $CN = \frac{2}{3}CG$ , $BN = \frac{2}{3}BJ$ In $\triangle ABC$ above, suppose $AH = 18$ and $BN = 10$ . You can use the Centroid Theorem<br>to find $AN$ and $BJ$ . $BN = \frac{2}{3}BJ$ Centroid Thm.<br>$AN = \frac{2}{3}(18)$ Substitute 18 for $AH$ .<br>$10 = \frac{2}{3}BJ$ Substitute 10 for $BN$ .<br>$AN = 12$ Simplify.In $\triangle ABS, RX = 48$ and $QW = 30$ . Find each length.<br>$1. RW$ $2. WX$ $a$ $a$ $\frac{32}{45}$ $15$ $15$ $a$ In $\triangle ABK, HD = 21$ and $BK = 18$ . Find each length.<br>$5. HB$ $6. BD$ $7$ $14$ $7$ $7$ $7. CK$ $8. CB$ $7$ $27.$ $9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Practice C</b><br><b>The argin triangle, what kind of line connects the orthocenter and the circumcenter?</b><br>After noticing a pattern with several triangles, Regina declares to the relass that in any triangle, the x-coordinate of the centroid is the average of the x-coordinate of the centroid is the average of the x-coordinates of the vertices and the y-coordinate of the centroid is the average of the x-coordinates of the vertices and the y-coordinate of the centroid is the average of the x-coordinates of the vertices. Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Regina's conclusion is correct.<br>2. Given: $\triangle ABC$ with $A(0, 0)$ , $B(2b, 2c)$ , $C(2a, 0)$<br>Prove: The coordinates of the centroid are $\left(\frac{2a+2b}{3}, \frac{2c}{3}\right)$ .<br>The midpoint of $\overline{AC}$ is $(a, 0)$ . Name this point $D$ .<br>The midpoint of $\overline{AB}$ is $(b, c)$ . Name this point $E$ .<br>The slope of $\overline{BD}$ is $\frac{2c}{2b-a}$ . Using $(a, 0)$ as a point on $\overline{BD}$ gives the equation $y = \frac{2c}{2b-a}(x-a)$ . The slope of $\overline{CE}$ is $\frac{-c}{2a-b}$ .<br>Using $(2a, 0)$ as a point on $\overline{CE}$ gives the equation $y = \frac{-c}{2a-b}(x-2a)$ .<br>The centroid will be the intersection point of $\overline{BD}$ and $\overline{CE}$ , so set the equations equal and simplify:<br>$\frac{2c}{2b-a}(x-a) = \frac{-c}{2a-b}(x-2a)$ .<br>$4acx - 2bcx - 4a^2c + 2abc = acx - 2bcx - 2a^2c + 4abc$ .<br>$3acx = 2a^2c + 2abc$<br>$x = \frac{2a+2b}{3}$ .<br>Substituting x into the equation of $\overline{BD}$ yields: $y = \frac{2c}{2b-a}\left(\frac{2a+2b}{3}-a\right)$<br>$= \frac{2c}{2b-a}\left(\frac{2b-a}{3}\right)$                                                                                                                                                                                                                                                                                                                                               | Reteach <b>ReteachAMedians and Altitudes of Triangles</b> $AH, BJ, and CG are medians of a triangle. They each join a vertex and the midpoint of the opposite side.The point of intersection of the medians is called the centroid of \triangle ABC.TheoremExampleCentroid TheoremThe centroid of a triangle is located \frac{2}{3} of the distance from each vertex to the midpoint of the opposite side.OreclassionCentroid TheoremThe centroid of a triangle is located \frac{2}{3} of the distance from each vertex to the midpoint of the opposite side.OreclassionDiven: \overline{AH}, \overline{CG}, and \overline{BJ} are medians of \triangle ABC.Conclusion: AN = \frac{2}{3}AH, CN = \frac{2}{3}CG, BN = \frac{2}{3}BJIn \triangle ABC above, suppose AH = 18 and BN = 10. You can use the Centroid Theorem to find AN and BJ.AN = \frac{2}{3}AH Centroid Thm.AN = \frac{2}{3}BJ Substitute 10 for BN.AN = \frac{2}{3}(18) Substitute 18 for AH.10A = \frac{16}{3}3OZA = \frac{16}{3}COLSPAN = 48 and OW = 30. Find each length.1. RW2. MX\frac{16}{3}3. OZ4. WZ161. RW2. MX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |