\qquad Date \qquad Class \qquad

Isson Practice A

5-3 Medians and Altitudes of Triangles

Fill in the blanks to complete each definition.

1. A median of a triangle is a segment whose endpoints are a vertex of the triangle and the \qquad of the opposite side.
2. An altitude of a triangle is a \qquad segment from a vertex to the line containing the opposite side.
3. The centroid of a triangle is the point where the three \qquad are concurrent.
4. The orthocenter of a triangle is the point where the three \qquad are concurrent.

Use the Centroid Theorem and the figure for Exercises 5-8. $\overline{Q U}, \overline{R S}$, and $\overline{P T}$ are medians of $\triangle P Q R$. $R S=21$ and $V T=5$. Find each length.
5. RV \qquad 6. $S V$
\qquad
7. $T P$
8. $V P$

The centroid is also called the center of gravity because it is the balance point of the triangle. By holding a tray at the center of gravity, a waiter can carry with one hand a large triangular tray loaded with several dishes.
9. If the vertices of the tray have coordinates $A(0,0), B(9,0)$, and $C(0,6)$, find the coordinates of the balance point (centroid) of the tray. (Hint: The x-coordinate of the centroid is the average of the x-coordinates of the three vertices, and the y-coordinate of the centroid is the average of the y-coordinates of the three vertices.) \qquad ,
10. If the waiter's hand is at the balance point and the distance from his hand to A is 16 inches, find the distance from his hand to $\overline{B C}$.

Complete Exercises 11-15 to find the coordinates of the orthocenter of $\triangle D E F$ with vertices $D(0,0), E(3,6)$, and $F(4,0)$.
11. Plot D, E, and F and draw $\triangle D E F$.
12. Find the equation of a line perpendicular to $\overline{D F}$ through E. (Hint: A vertical line always takes the form $x=$ \qquad .)
\qquad
13. Find the slope of $\overline{E D}$. \qquad

14. Find the slope of a line perpendicular to $\overline{E D}$.
15. Find the equation of a line perpendicular to $\overline{E D}$ through F. \qquad

Practice A

5-3 Medians and Altitudes of Triangles

Fill in the blanks to complete each definition

1. A median of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side.
2. An altitude of a triangle is a perpendicular segment from a vertex to the line containing the opposite side.
3. The centroid of a triangle is the point where the three medians are concurrent.
4. The orthocenter of a triangle is the point where the three \qquad altitudes are concurrent.
Use the Centroid Theorem and the figure for Exercises 5-8. $\overline{Q U}, \overline{R S}$, and $\overline{P T}$ are medians of $\triangle P Q R$. $R S=21$ and $V T=5$ Find each length.
5. $R V$ \qquad
6. $S V \quad 7$
7. $V P \xrightarrow{ } 10$
L
8. $T P$ \qquad

centroid is also called the center of gravity because it is th
balance point of the triangle. By holding a tray at the center of
balance point of the triangle. By holding a tray at the center of
gravity, a waiter can carry with one hand a large triangular tray
gravity, a waiter can carry
loaded with several dishes.
9. If the vertices of the tray have coordinates $A(0,0), B(9,0)$, and $C(0,6)$, find the coordinates of the balance point (centroid) of the tray. (Hint: The x-coordinate of the centroid is the average of the x-coordinates of the three vertices, and the y-coordinate of the centroid is the average of the y-coordinates of the three vertices.)
10. If the waiter's hand is at the balance point and the distance from his hand to A is 16 inches, find the distance from his hand to $B C$. \qquad 8 in.

Complete Exercises 11-15 to find the coordinates of the orthocenter of $\triangle D E F$ with vertices $D(0,0), E(3,6)$, and $F(4,0)$.
11. Plot D, E, and F and draw $\triangle D E F$
12. Find the equation of a line perpendicular to $\overline{D F}$ through E. (Hint: A vertical line always takes the form $x=$ $x=3$
13. Find the slope of $\overline{E D}$ \qquad 2
14. Find the slope of a line perpendicular to $\overline{E D}$. \qquad
15. Find the equation of a line perpendicular to $\overline{E D}$ through F.
 $\underset{\substack{\text { Copyight oby Holt, Rineant and Winston. } \\ \text { Alt rights resenved. }}}{ }$

19
Holt Geometry

Practice C

5-3 Medians and Altitudes of Triangles

1. In a right triangle, what kind of line connects the orthocenter and the circumcenter? \qquad

After noticing a pattern with several triangles, Regina declares to her class that in any triangle, the x-coordinate of the centroid is the average of the x-coordinates of the vertices and the y-coordinate of the centroid is the average of the y-coordinates of the vertices. Regina used inductive reasoning to come to her conclusion. Use deductive reasoning to prove that Regina's conclusion is correct.
2. Given: $\triangle A B C$ with $A(0,0), B(2 b, 2 c), C(2 a, 0)$

Prove: The coordinates of the centroid are $\left(\frac{2 a+2 b}{3}, \frac{2 c}{3}\right)$.

The midpoint of $\overline{A C}$ is $(a, 0)$. Name this point D.
The midpoint of $\overline{A B}$ is (b, c). Name this point E.
The slope of $\overline{B D}$ is $\frac{2 c}{2 b-a}$. Using $(a, 0)$ as a point on $\overline{B D}$ gives the equation $y=\frac{2 c}{2 b-a}(x-a)$. The slope of $\overline{C E}$ is $\frac{-c}{2 a-b}$.
Using (2a, 0) as a point on $\overline{C E}$ gives the equation $y=\frac{-c}{2 a-b}(x-2 a)$.
The centroid will be the intersection point of $\overline{B D}$ and $\overline{C E}$, so set the equations equal and simplify:

$$
\begin{aligned}
\frac{2 c}{2 b-a}(x-a) & =\frac{-c}{2 a-b}(x-2 a) \\
(4 a c-2 b c)(x-a) & =(a c-2 b c)(x-2 a) \\
4 a c x-2 b c x-4 a^{2} c+2 a b c & =a c x-2 b c x-2 a^{2} c+4 a b c \\
3 a c x & =2 a^{2} c+2 a b c \\
x & =\frac{2 a+2 b}{3}
\end{aligned}
$$

Substituting x into the equation of $\overline{B D}$ yields: $y=\frac{2 c}{2 b-a}\left(\frac{2 a+2 b}{3}-a\right)$

$$
\begin{aligned}
& =\frac{2 c}{2 b-a}\left(\frac{2 b-a}{3}\right) \\
& =\frac{2 c}{3}
\end{aligned}
$$

Practice B

5-3 Medians and Altitudes of Triangles

Use the figure for Exercises 1-4. $G B=12 \frac{2}{3}$ and $C D=10$

Find each length.	
1. $F G$	$6 \frac{1}{3}$
3. $G D$	$3 \frac{1}{3}$

5. A triangular compass needle will turn most easily if it is attached to the compass face easily if it is attached to the compass face
through its centroid. Find the coordinates of the centroid

Find the orthocenter of the triangle with
 he given vertices.
6. $X(-5,4), Y(2,-3), Z(1,4) \quad$ 7. $A(0,-1), B(2,-3), C(4,-1)$
(2,5 $(2,-3)$

Reteach
5-3. Medians and Altitudes of Triangles

located $\frac{2}{3}$ of the distance from each vertex to the midpoint of

Theorem
Centroid Theorem
The centroid of a triangle is
located $\frac{2}{3}$ of the distance from
each vertex to the midpoint of
the opposite side.

Use the figure for Exercises 8 and $9 . \overline{H L}, \overline{I M}$, and $\overline{J K}$ are medians of $\triangle H I J$.
8. Find the area of the triangle \qquad $36 \mathrm{~m}^{2}$
9. If the perimeter of the triangle is 49 meters, then find the length of $\overline{M H}$. (Hint: What kind of a triangle is it?) 10.25 m \qquad
10. Two medians of a triangle were cut apart at the centroid to make the four segments shown below. Use what you know about the Centroid Theorem to reconstruct the original triangle from the four segments shown. Measure the side lengths of your triangle to check that you constructed medians. (Note: There are many possible answers.)

In $\triangle A B C$ above, suppose $A H=18$ and $B N=10$. You can use the Centroid Theorem to find $A N$ and $B J$.

$A N=\frac{2}{3} A H$	Centroid Thm.	$B N=\frac{2}{3} B J$	Centroid Thm.
$A N=\frac{2}{3}(18)$	Substitute 18 for $A H$.	$10=\frac{2}{3} B J$	Substitute 10 for $B N$.
$A N=12$	Simplify.	$15=B J$	Simplify.

In $\triangle Q R S, R X=48$ and $Q W=30$. Find each length.
In $\triangle Q R S, R X=48$ and $Q W=$ 30. Find each length.

1. $R W$	2. $W X$		
	32		16
3. $Q Z$		4. $W Z$	
	45		15

In $\triangle H J K, H D=21$ and $B K=18$. Find each length.

5. $H B$		6. $B D$	
	14		7
7. $C K$		8. $C B$	
	27		9

22
Holt Geometry

