\qquad Date \qquad
\qquad

LESSON
 Problem Solving

5-3 Medians and Altitudes of Triangles

1. The diagram shows the coordinates of the vertices of a triangular patio umbrella. The umbrella will rest on a pole that will support it. Where should the pole be attached so that the umbrella is balanced?
2. In a plan for a triangular wind chime, the coordinates of the vertices are $J(10,2)$, $K(7,6)$, and $L(12,10)$. At what coordinates should the manufacturer attach the chain from which it will hang in order for the chime to be balanced?

3. Triangle $P Q R$ has vertices at $P(-3,5)$, $Q(-1,7)$, and $R(3,1)$. Find the coordinates of the orthocenter and the centroid.

Choose the best answer.

4. A triangle has coordinates at $A(0,6)$, $B(8,6)$, and $C(5,0) . \overline{C D}$ is a median of the triangle, and $\overline{C E}$ is an altitude of the triangle. Which is a true statement?

A The coordinates of D and E are the same.
B The distance between D and E is 1 unit.
C The distance between D and E is 2 units.
D D is on the triangle, and E is outside the triangle.
5. Lines j and k contain medians of $\triangle D E F$. Find y and z.

$$
\begin{array}{ll}
\text { F } y=16 ; z=4 & \text { H } y=64 ; z=4.8 \\
\text { G } y=32 ; z=4 & \text { J } y=108 ; z=8
\end{array}
$$

6. An inflatable triangular raft is towed behind a boat.

The raft is an equilateral triangle. To maintain balance, the seat is at the centroid B of the triangle. What is $A B$, the distance from the seat to the tow rope? Round to the nearest tenth.

A 18.7 in .
B 37.4 in .
C 43.1 in .

D 56.0 in.

Reteach

Medians and Altitudes of Triangles continued

Find the orthocenter of $\triangle A B C$ with vertices $A(-3,3), B(3,7)$, and $C(3,0)$.
Step 1 Graph the triangle.
Step 2 Find equations of the lines containing two altitudes.
The altitude from A to $\overline{B C}$ is the horizontal line $y=3$.
The slope of $\overleftrightarrow{A C}=\frac{0-3}{3-(-3)}=-\frac{1}{2}$, so the slope of the altitude from B to $\overline{A C}$ is 2. The altitude must pass through $B(3,7)$.
$y-y_{1}=\mathrm{m}\left(x-x_{1}\right)$ Point-slope form

$y-7=2(x-3) \quad$ Substitute 2 for m and the coordinates of $B(3,7)$ for $\left(x_{1}, y_{1}\right)$. $y=2 x+1 \quad$ Simplify.
Step 3 Solving the system of equations $y=3$ and $y=2 x+1$, you find that the coordinates of the orthocenter are $(1,3)$.

Triangle $F G H$ has coordinates $F(-3,1), G(2,6)$, and $H(4,1)$.
9. Find an equation of the line containing the altitude from G to $\overline{F H}$.

$$
x=2
$$

10. Find an equation of the line containing the altitude from H to $\overline{F G}$

$$
y=-x+5
$$

11. Solve the system of equations from Exercises 9 and 10 to find the coordinates of the orthocente
$(2,3)$

Find the orthocenter of the triangle with the given vertices.

Problem Solving
 5-3 Medians and Altitudes of Triangles

1. The diagram shows the coordinates of the vertices of a triangular patio umbrella. The umbrella will rest on a pole that will support it. Where should the pole be attached so that the umbrella is balanced?

$$
\left(4, \frac{14}{3}\right)
$$

2. In a plan for a triangular wind chime, the coordinates of the vertices are $J(10,2)$, $K(7,6)$, and $L(12,10)$. At what coordinates should the manufacturer attach the chain from which it will hang in order for the chime to be balanced?

$$
\left(9 \frac{2}{3}, 6\right)
$$

3. Triangle $P Q R$ has vertices at $P(-3,5)$ $Q(-1,7)$, and $R(3,1)$. Find the coordinates of the orthocenter and the centroid. $\left(-1 \frac{1}{5} ; 5 \frac{4}{5}\right):\left(-\frac{1}{3}, 4 \frac{1}{3}\right)$

Choose the best answer
4. A triangle has coordinates at $A(0,6)$, $B(8,6)$, and $C(5,0) . \overline{C D}$ is a median of the triangle, and $\overline{C E}$ is an altitude of the triangle. Which is a true statement?
A The coordinates of D and E are the same.
(B) The distance between D and E is 1 unit.

C The distance between D and E is 2 units
D D is on the triangle, and E is outside the triangle.
6. An inflatable triangular raft is towed behind a boat.

The raft is an equilateral triangle. To maintain balance, the seat is at the centroid B of the triangle. What is $A B$, the distance from the seat to the tow rope? Round to the nearest tenth.
A 18.7 in .
(B) 37.4 in .

C 43.1 in .
D 56.0 in
5. Lines j and k contain medians of $\triangle D E F$. Find y and z.

$$
\begin{array}{ll}
\text { F } y=16 ; z=4 & \text { (H) } y=64 ; z=4.8
\end{array}
$$

$$
\begin{array}{ll}
\text { F } y=16 ; z=4 & \text { (H) } y=64 ; z=4.8 \\
\text { G } y=32 ; z=4 & \text { J } y=108 ; z=8
\end{array}
$$

Copyrigh by bol, Rinehat and Winston.	25	Holt Geometry

Challenge

5-3 Exploring Another Point of Concurrency
The Fermat point, named after seventeenth century mathematician Pierre de Fermat, is a special point in an acute triangle that can be found by using the following steps.

Step 1 Draw an acute triangle $A B C$.
Step 2 Construct an equilateral triangle on each side of $\triangle A B C$ and label the new vertices $A^{\prime}, B^{\prime}, C^{\prime}$ as shown.
Step 3 Connect the opposite vertices by drawing $\overline{A A^{\prime}}, \overline{B B^{\prime}}$, and $\overline{C C^{\prime}}$.
Step 4 The point of concurrency of these segments is the Fermat point of $\triangle A B C$. Label this point F.

Use the figure above for Exercises 1 and 2.

1. Make a conjecture comparing the lengths of $\overline{A A^{\prime}}, \overline{B B^{\prime}}$, and $\overline{C C^{\prime}}$. Verify your conjecture by measuring the segments.
The segments have equal lengths.
2. Find the sum of $A F, B F$, and $C F$ Compare this sum to the lengths of the segments that you found in Exercise 1. The sum equals one segment length.

Point F is the Fermat point in $\triangle G H J$

3. Find the sum of the distances from the Fermat point to each vertex of $\triangle G H J$. Round to the nearest tenth of a centimeter. Possible answer: 5.8 cm
4. Draw two more points inside $\triangle G H J$ and label the points X and Y. Then find each sum: $G X+H X+J X$ and $G Y+$ $H Y+J Y$. Compare the sums to the sum you found by using the Fermat point.
These sums are both greater than the sum found by using the Fermat point.
5. Make a conjecture about the sum of the distances from the Fermat point to the vertices of a triangle, compared to the sum of the distances from any point to the vertices of a triangle.
The sum of the distances from the Fermat point to the vertices is the least sum that is possible from any point in a triangle to each of the three vertices.

6. Draw an acute triangle. Locate the Fermat point. Repeat Exercises 3 and 4. How do the results compare to the conjecture you made in Exercise 5 ?

The sums found using X and Y are both greater than the sum found by using the Fermat point. This verifies the conjecture.
${ }^{\text {Cil }}$

${ }^{\text {LIESSOM }}$ Reading Strategies
 5-3. Understanding Vocabulary

The following vocabulary terms identify special points and segments for triangles.
A median of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side

The centroid of a triangle is the point
of concurrency of the medians of a
triangle. X is the centroid in this triangle.

Use the figure for Exercises 2-4.

1. How many medians does a triangle have? Explain your answer.

Abstract

24

Holt Geometry

Three; a triangle has three sides and three vertices, so three segments connect the vertices with their opposite sides.
2. Explain why $\overline{X C}$ is a median of $\triangle X Y Z$.

It starts at one of the vertices and ends at the midpoint of the opposite side.
3. What are the other medians of $\triangle X Y Z$? 4. What is the centroid of $\triangle X Y Z$?
$Z B$ and $\overline{D Y}$

An altitude of a triangle is a perpendicular segment from a vertex to the line containing the opposite side.

The orthocenter of a triangle is the point o concurrency of the altitudes of a triangle.

5. How many altitudes does a triangle have? Explain.

One altitude can be drawn from each vertex of a triangle, so every triangle has three altitudes.
$\overline{A X} ; \overline{B Y} ; \overline{C Z}$
7. What is the orthocenter of $\triangle A B C$?
$\frac{\overline{A X} ; \overline{B Y} ; \overline{C Z}}{\substack{\text { Eopyignte by Hot, Rineharat and Winston. }}} \quad 26 \quad$ point W

