Lesson Objectives (p. 155):

Key Concepts

1. Postulate 3-2-1—Corresponding Angles Postulate (p. 155):

THEOREM	HYPOTHESIS	CONCLUSION

2. Theorems—Parallel Lines and Angle Pairs (p. 156):

THEOREM	HYPOTHESIS	CONCLUSION
3-2-2 Alternate Interior Angles Theorem		
3-2-3 Alternate Exterior Angles Theorem		
3-2-4 Same-Side Interior		
Angles Theorem		

Lesson Objectives (p. 155):
prove and use theorems about angles formed by parallel lines and a
transversal.

Key Concepts

1. Postulate 3-2-1—Corresponding Angles Postulate (p. 155):

THEOREM	HYPOTHESIS	CONCLUSION
If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.		$\begin{aligned} & \angle 1 \cong \angle 3 \\ & \angle 2 \cong \angle 4 \\ & \angle 5 \cong \angle 7 \\ & \angle 6 \cong \angle 8 \end{aligned}$

2. Theorems—Parallel Lines and Angle Pairs (p. 156):

THEOREM	HYPOTHESIS	CONCLUSION
3-2-2 Alternate Interior Angles Theorem If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.		$\begin{aligned} & \angle 1 \cong \angle 3 \\ & \angle 2 \cong \angle 4 \end{aligned}$
3-2-3 Alternate Exterior Angles Theorem If two parallel lines are cut by a transversal, then the two pairs of alternate exterior angles are congruent.		$\begin{aligned} & \angle 5 \cong \angle 7 \\ & \angle 6 \cong \angle 8 \end{aligned}$
3-2-4 Same-Side Interior Angles Theorem If two parallel lines are cut by a transversal, then the two pairs of same-side interior angles are supplementary.		$\begin{aligned} & m \angle 1+m \angle 4=180^{\circ} \\ & m \angle 2+m \angle 3=180^{\circ} \end{aligned}$

3. Get Organized Complete the graphic organizer by explaining why each of the three theorems is true. (p. 157).

4. Get Organized Complete the graphic organizer by explaining why each of the three theorems is true. (p. 157).

Corr. İ Post.

Alt. Int. $\llcorner\mathrm{s}$ Thm.
$\angle 1$ and $\angle 3$ are vert. \angle, so $\angle 1 \cong \angle 3$.
$\angle 1$ and $\angle 2$ are corr. \angle s, so $\angle 1 \cong \angle 2$. $\angle 2 \cong \angle 3$ by Trans. Prop. of \cong

Alt. Ext. \&s Thm.
$\angle 2$ and $\angle 4$ are vert. \angle s, so $\angle 2 \cong \angle 4$.
$\angle 1$ and $\angle 2$ are corr. \angle, so $\angle 1 \cong \angle 2$.
$\angle 1 \cong \angle 4$ by Trans. Prop. of \cong

Same-Side Int. \&s Thm.

$\angle 1$ and $\angle 5$ form a lin. pair, so $\mathrm{m} \angle 1$ $+m \angle 5=180^{\circ} . \angle 1$ and $\angle 2$ are corr. \angle, so $m \angle 1=m \angle 2 . m \angle 2+m \angle 5=$ 180° by subst. $\mathrm{m} \angle 2$ and $\mathrm{m} \angle 5$ are supp. \angle by def. of supp. \angle

